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Part I

The Riemann Integral
Our basic problem in this section will be how to compute an integral. An integral
is a number that has something to do with the area underlying a function. As we
will discuss in class the concept of integral is closely related to that of summation



(the symbol
R
represents a stretched S for sum) and to that of differentiation

(one is in some sense the inverse of the other). First here we will give some basic
definitions that will help us defining more precisely what we mean by an integral.
Then we will give some conditions for the existence of integral and some properties
of the integral itself. We’ll then go through some basic theorems and techniques
useful in computing the integrals and finally we’ll consider some extensions of the
concept.

1. Definitions

Consider for the rest of this section a function f(x) : [a, b]→ <, bounded on the
interval [a, b]

Definition 1.1. A partition of [a, b] is a finite set of points: a = x0 < x1 < .... <
xn−1 < xn = b.We’ll use the letter P to denote a partition.

Definition 1.2. The upper sum of f relative to P , denoted by U(f, P ), is

nX
i=1

Li(xi − xi−1)

where Li = supx∈[xi−1,xi] f(x).
Analogously we define the lower sum L(f, P ) =

Pn
i=1 li(xi − xi−1)

where Li = infx∈[xi−1,xi] f(x).

Definition 1.3. Let ℘(a, b) be the set of all possible partitions over [a, b].The
upper Riemann integral of f over [a, b] is defined as :

inf
P∈℘

U(f, P ) =

Z b

a

f(x)dx

Analogously the lower Riemann integral of f over [a, b] is defined as

sup
P∈℘

L(f, P ) =

Z b

a

f(x)dx

2



Definition 1.4. The function f(x) is (Riemann) integrable over [a, b] ifZ b

a

f(x)dx =

Z b

a

f(x)dx =

Z b

a

f(x)dx

The number denoted by
R b
a
f(x)dx is the definite Riemann integral of f(x) over

[a, b].

These definitions are not very useful in computing integrals although in some
cases they can be applied directly as in the following example:

Example 1.5. Suppose we want to compute the integral of f(x) = 1 on the
interval [0, 1].It’s easy to see that for every partition we take U(f, P ) = L(f, P ) =

1 so applying the last two definitions
R b
a
dx =

R b
a
dx =

R b
a
dx = 1. (You might say

there is a better way of computing that integral and you might be right...).

We’ll now state and proof a theorem that will be useful later.

Theorem 1.6. Take two arbitrary partitions P1 and P2 over [a, b]. Then

U(f, P1) ≥ L(f, P2) ∀P1, P2

Proof. Consider the partition P3 = P1 ∪ P2. It’s easy to see that U(f, P1) ≥
U(f, P3) (As the partition gets finer the upper sums decrease) and that L(f, P1) ≤
L(f, P3) (and the lower sums increase). From the definitions of upper and lower
sums also follows that U(f, P3) ≥ L(f, P3). Combining the three inequalities we
have

U(f, P1) ≥ U(f, P3) ≥ L(f, P3) ≥ L(f, P2)

The previous theorem states that every upper sum is larger than any lower
sum. It’s very intuitive if one thinks of the geometrical interpretation of lower
and upper sums.
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2. Conditions for integrability

In this section we present some conditions that help us determining whether the
integral of a certain function exist.

Theorem 2.1. (Riemann necessary and sufficient condition for integrability) .
Consider the function f(x) : [a, b] → <, bounded on the interval [a, b]. f is

integrable if and only if ∀² > 0 ∃P over [a, b] s.t.

U(f, P )− L(f, P ) < ²
that is

nX
i=1

(Li − li)(xi − xi−1) < ²

Exercise 2.1. Prove the previous theorem.

The following theorems present some sufficient (but not necessary) conditions
for integrability.

Theorem 2.2. If f(x) : [a, b]→ < is continuous then it is integrable.

Exercise 2.2. Prove the previous theorem.

Theorem 2.3. If f(x) : [a, b] → < has a finite number of discontinuities and it
is bounded then it is integrable.

Theorem 2.4. If f(x) : [a, b]→ < is monotone then it is integrable.
Proof. Consider the partition P composed by n equally distant points so that
each sub-interval in the partition has length b−a

n
. We then have

U(f, P )− L(f, P ) = b− a
n

nX
i=1

(Li − li)

Assume now w.l.o.g. that f is a monotonically increasing function. We can write

b− a
n

nX
i=1

(Li − li) =

=
b− a
n
(f(x1)− f(a) + f(x2)− f(x1) + ...+ f(b)− f(xn−1))

=
b− a
n
(f(b)− f(a))
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then given ²>0 pick n s.t.

n >
b− a
²
(f(b)− f(a))

and the Riemann condition is satisfied.

Example 2.5. Consider now the following function on [0, 1] f(x) = 1 if x is
rational and 0 otherwise. The function is not integrable.

3. Properties of the Riemann integral

We now state some useful properties of the Riemann integral. You are strongly
recommended to proof them as an exercise.
As a convention we assume the following:Z a

a

f(x)dx = 0Z b

a

f(x)dx = −
Z a

b

f(x)dx

We can now list some important properties:
Consider f and g integrable on [a, b] then
k1f + k2f is integrable and we have:Z b

a

k1f(x) + k2g(x)dx = k1

Z b

a

f(x)dx+ k2

Z b

a

g(x)dx (3.1)

where k1 and k2 are given constants.Z b

a

f(x)dx =

Z c

a

f(x)dx+

Z b

c

f(x)dx c ∈ [a, b] (3.2)

if f(x) ≥ m ∀x ∈ [a, b]→
Z b

a

f(x)dx ≥ m(b− a) (3.3)

if f(x) ≥ g(x) ∀x ∈ [a, b]→
Z b

a

f(x)dx ≥
Z b

a

g(x)dx (3.4)

|f(x)| is integrable and we have¯̄̄̄Z b

a

f(x)dx

¯̄̄̄
≤
Z b

a

|f(x)| dx (3.5)

Exercise 3.1. Prove 3.1 and 3.5..
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4. The fundamental theorem of calculus

In this section we’ll derive formally the relationship between the operation of
integration and differentiation. We first need a new version of the mean value
theorem and an additional definition:

Theorem 4.1. (Mean value theorem for integral calculus).If f(x) is continuous
on [a, b] then ∃ ξ ∈ [a, b] s.t.Z b

a

f(x)dx = f(ξ)(b− a)

Proof. If f is continuous on the interval then it has a maximum and a minimum
on it (why ? ) M and m. and therefore by 3.3 we have

m(b− a) ≤
Z b

a

f(x)dx ≤M(b− a)

therefore we can find a number λ ∈ [m,M ] satisfyingZ b

a

f(x)dx = λ(b− a)

but since λ ∈ [m,M ] and f is continuous by the mean value theorem we know
there is a number ξ ∈ [a, b] s.t. f(ξ) = λ.

Definition 4.2. Let f be a continuous function on [a, b] we define its indefinite
integral the function

F (x) =

Z x

a

f(t)dt x ∈ [a, b]

We are now ready to prove the central theorem of this section:

Theorem 4.3. (Fundamental theorem of calculus or Torricelli-Barrow theorem).
If f(t) is continuous F (x) is continuous, differentiable and F 0(x) =f(x).

Proof. Consider

∆F (x) =

Z x+∆x

a

f(t)dt−
Z x

a

f(t)dt =

Z x+∆x

x

f(t)dt.
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By the previous mean value theorem we have that :Z x+∆x

x

f(t)dt = f(ξ)∆x ξ ∈ [x, x+∆x]

and therefore

F 0(x) = lim
∆x→0

∆F (x)

∆x
= lim

∆x→0
f(ξ) = lim

ξ→x
f(ξ)

and by the continuity of f
F 0(x) = f(x)

4.1. Application

Definition 4.4. A primitive of f(x) is a function g(x) such that d
dx
g(x) = f(x)

as derivative.

Often a primitive of f is denoted by the symbol
R
f(x)dx (without the extremes

of integration). Since two functions that have the same derivative can at most
differ by a constant (Can you prove it ?) and since we have seen that d

dx

R x
a
f(t)dt

= f(x) we can characterize all primitives of f , denoted by Φ, with the following
equation

Φ(x) =

Z x

a

f(t)dt+ c c constant

Letting x = a we find c = Φ(a) and letting x = b we findZ b

a

f(x)dx = Φ(b)− Φ(a)

sometimes we write the previous expression as

Φ(x)|ba
so the key object we need to evaluate

R b
a
f(x)dx is a primitive of f(x).

5. Methods for finding primitives

While computing derivatives is a straightforward technique for every function find-
ing the primitive of a function can be very hard. Here we report some integration
methods that work with relatively simple functions.
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5.1. Immediate integrals

In the following table we report some primitives of basic functions

Function Primitive

xα(α 6= −1) xα+1

α+1
+ c

x−1 log(x) + c
ex ex + c
sin(x) − cos(x) + c
cos(x) sin(x) + c
1

1+x2
arctan(x) + c

1√
1+x2

arcsin(x) + c

These integrals can be used as a basis for a guess and verify method:

Exercise 5.1. Find
R
axdx

The following two methods transform the original integral in another one that
is (hopefully) easier to compute.

5.2. Integration by substitution

Theorem 5.1. Let f(x) a continuous function over an interval and let x = φ(t)
a C1 function with φ0(t) 6= 0. Then we have :Z

f(x)dx =

∙Z
f(φ(t))φ0(t)dt

¸
x=φ(t)

Proof. Let F (x) be a primitive of f(x) then F (φ(t)) is a primitive of f(φ(t))φ0(t).
Applying infact the chain rule we have that

F 0(φ(t)) = F 0(φ(t))φ0(t) = f(φ(t))φ0(t)

therefore we haveZ
f(x)dx = F (x) + c = F (φ(t)) + c =

Z
f(φ(t))φ0(t)dt
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5.2.1. Procedure

• Find a suitable x = φ(t)

• Compute dx = φ0(t)dt

• Substitute for x and dx in the original integral.

When you use the substitution method with a definite integral always remeber
to change the integration bounds.

Exercise 5.2. Compute
R 1
0

dx
x2+4

using the substitution x = 2t

5.3. Integration by parts

Let u and v two C2 functions. We have:Z
u(x)v0(x)dx = u(x)v(x)−

Z
u0(x)v(x)dx

u is called the finite factor while v is called the differential factor.

Exercise 5.3. Prove the above equality.

Exercise 5.4. Compute
R
log xdx using log(x) as finite factor and 1 as differential

factor.

6. Improper integrals

In this section we consider the integrability of unbounded functions or functions
with unbounded support
Let f be a function continuous everywhere on [a, b) and unbounded in a neigh-

borhood of b and suppose we want to compute
R b
a
f(x)dx.We take a point ξ ∈ [a, b)

and we compute the following limit :

lim
ξ→b

Z ξ

a

f(x)dx = lim
ξ→b

F (ξ)− F (a)

if the limit exists finite then f(x) is improperly integrable on [a, b].

Exercise 6.1. Compute
R 1
0

1√
x
dx
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Similarly we can compute the (improper) integral of f continuous on [a,∞) by
computing the limit (if it exists and is finite):

lim
ξ→∞

Z ξ

a

f(x)dx = lim
ξ→∞

F (ξ)− F (a)

Exercise 6.2. Compute
R∞
0
e−xdx.

The previous method for computing improper integrals are applicable when
we know the primitive of the integrand function. If we don’t we can at least check
their existence using the following two theorems.

Theorem 6.1. If f is continuous everywhere on [a, b) and unbounded in a neigh-

borhood of b,
R b
a
f(x)dx exists if

lim
x→b

f(x)
1
x−b

= 0

Theorem 6.2. If f is continuous on [a,∞) ,
R b
a
f(x)dx exists if

lim
x→∞

f(x)
1
x

= 0

Exercise 6.3. Verify the existence of
R +∞
−∞ e−x

2
dx.

7. The Riemann Stieltjes integral

In this section we consider a generalization of the Riemann integral that is par-
ticularly useful in statistics and econometrics. Consider a function f bounded
on [a, b] (integrand) and function g bounded and monotone on [a, b] (integrator).
Take once again a partition P and define:

U(f, g, P ) =
nX
i=1

(g(xi)− g(xi−1)) sup
x∈[xi−1,xi]

f(x)

L(f, g, P ) =
nX
i=1

(g(xi)− g(xi−1)) inf
x∈[xi−1,xi]

f(x)
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The Riemann Stieltjes integral of f(x) with respect to g(x) is the common
value (if it exists) defined by the following equality:

inf
P∈℘

U(f, g, P ) = sup
P∈℘

L(f, g, P )

and is denoted by the symbol
R b
a
f(x)dg.

Theorems and conditions similar to those seen before apply to the Riemann-
Stieltjes integral too. In particular the Riemann condition is necessary and suffi-
cient for existence while monotonicity and continuity of the integrand are sufficient
conditions.
If the integrator is a step function and the integrand is continous then the R.S.

is easy to compute as shown in the following theorem:

Theorem 7.1. Let g be a step function on [a, b] with jumps g1, ...gn at x1, ...xn
and let f be a continous function on [a, b] then we haveZ b

a

f(x)dg =
nX
i=1

f(xi)gi

Notice though that if the integrand is discontinouos and the integrator has a
finite number of discontinuities then the R.S. integral may fail to exist.

Exercise 7.1. Verify the integrability of the following function over the interval
[1,4]:

f(x) =
−1 x ∈ [1, 2)
1 x ∈ [2, 4]

w.r.t the integrator g(x) = f(x).

The following theorem is useful in reducing the R.S. integral to a R. integral

Theorem 7.2. If f(x) is continuous on [a, b] and g is differentiable with contin-
uous derivative we have Z

f(x)dg =

Z
f(x)g0(x)dx
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8. The Leibniz’s rule

We will now present a theorem that is useful when the integrand function depends
also on a parameter that is also in the integrations bounds

Theorem 8.1. Let f be a continous function with continous partial derivative
with respect to a parameter a and let p and q be differentiable function. Consider
the function

F (a) =

Z q(a)

p(a)

f(x, a)dx

then

F 0(a) =

Z q(a)

p(a)

df(x, a)

da
dx+ f(q(a), a)q0(a)− f(p(a), a)p0(a)
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Part II

Linear Algebra
Linear algebra is the theory of linear functions. This theory has a wide range of
applications and so we start considering a very general framework.

9. Vector Spaces

So far our space was <, that is the real line. Now we will enter a in a more complex
environment called vector space. A vector space is a space of vectors, together
with rules for adding vectors and multiplying them with elements belonging to a
field.

Definition 9.1. Let K be a subset of the complex numbers C. K is a field if it
satisfies the following conditions:

• If x ∈ K and y ∈ K then x+ y ∈ K and xy ∈ K

• If x ∈ K then −x ∈ K and if x 6= 0 then x−1 ∈ K

• 0 , 1 ∈ K

When we do not specify a field we implicitly assume that the relevant field is
< that is the set of reals together with addition and multiplication defined in the
standard way.

Exercise 9.1. Determine if the following sets are fields: Q (the set of rationals)
N (the natural numbers) , the interval on the real line [0, 1]

Definition 9.2. A vector space V over the fieldK is a set of objects together with
the operations +: V x V → V (sum) and *: K x V → V (scalar multiplication)
satisfying the following properties:

1. Given u , v , w elements of V we have: (u+v)+w = u+(v+w) (Associativity
for sum)
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2. ∃ O∈ V satisfying O +u = u+ O = u ∀u ∈ V (Identity for sum)

3. ∀u ∈ V ∃(−u) ∈ V s.t. u+ (−u) = O (Inverse element for sum)

4. Given u , v elements of V : u+ v = v + u (Commutativity)

5. Given u , v elements of V and c ∈ K we have c ∗ (a+ b) = c ∗ a+ c ∗ b

6. Given a, b elements of K and u ∈ V we have (a + b) ∗ u = a ∗ u + b ∗ u
(Distributive laws)

7. Given a, b elements of K and u ∈ V we have (a ∗ b) ∗ u = a ∗ (a ∗ u)
(Associativity for scalar product)

8. ∀u ∈ V we have 1 ∗ u = u (identity for scalar product).

Exercise 9.2. Given u, v elements of V such that u+ v = u show that v =O.

Since we have not defined what a vector is at this stage the concept of vector
space is a very general one and can encompass fairly complicated spaces as the
space of infinite sequences or spaces of functions.

Exercise 9.3. Consider the set of bounded and continuous functions f : [0, 1]→
<. Define addition and scalar product over < and show that it is a vector space.
Is the space of monotonic functions a vector space ?

Another useful concept is that of subspace:

Definition 9.3. A set W ⊆ V (vector space) is a vector subspace if :

1. Given u , v elements of W, u+ v ∈ W

2. Given u ∈W and c ∈ K , c ∗ u ∈W

3. O∈ W

Exercise 9.4. Define a linear combination of n vectors ( v1, v2, ..., vn) elements of
V to be the expression

Pn
i=1 vi ∗ αi where αi ∈ K. Show that the set of all linear

combinations of ( v1, v2, ..., vn) is a vector subspace.

Exercise 9.5. Consider the vector space Cn (The space of complex vectors) with
the field C. Is <n a vector subspace of that field ?
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10. Linear independence, bases and dimension of a vector
space.

In this section we develop the concept of bases that is a collection of vectors
that can be used to construct an entire vector space. Notice that still we do not
specify what a vector is so the following concepts apply to general vector spaces.
(Notationally now we will omit the symbol * to denote the scalar product)

Definition 10.1. The vectors ( v1, v2, ..., vn) elements of V are linearly indepen-
dent if

nX
j=1

αivi = O→ αi = 0 αi ∈ K ∀i

The vectors are linearly dependent if there are n scalars (α1,α2, ... αn) αi 6= 0 for
some i such that

Pn
j=1 αivi =O.

Exercise 10.1. Show that O cannot be a part of a collection of linear independent
vectors.

Exercise 10.2. Show that n vectors are linearly dependent if and only if one of
them can be expressed as linear combination of the others.

Exercise 10.3. Show that if ( v1, v2, ..., vn) are linearly independent then ( v1, v2, ..., vn−1)
are linearly independent too and that if ( v1, v2, ..., vn) are linearly dependent then
( v1, v2, ..., vn+1) are linearly dependent too.

Exercise 10.4. In the space of functions show that x and x2 are linearly inde-
pendent and that x and 3x are linearly dependent.

Definition 10.2. The vectors ( v1, v2, ..., vn) elements of V are said to generate
V if ∀u ∈ V ∃(α1,α2, ... αn) ∈ K such that u =

Pn
i=1 αivi.

Definition 10.3. The vectors ( v1, v2, ..., vn) elements of V are a basis for V if
they generate V and are linearly independent. If ( v1, v2, ..., vn) are a basis for V
and w ∈ V then we have

w=

nX
i=1

viai ai ∈ <.

The numbers a1, ...an are called the coordinates of w with respect to the basis
(v1, v2, ..., vn).
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Theorem 10.4. Let (v1, v2, ..., vn) be a basis for a vector space V and w be
an element of V. Let a1, ...an be the coordinates of w with respect to the ba-
sis (v1, v2, ..., vn). Then a1, ...an are uniquely determined.Proof. Assume there
is a different set of coordinates (b1, ...bn) s.t. w=

Pn
i=1 vibi. This implies that

O=
Pn

i=1 vi(bi − ai) but since by assumption ∃ i s.t. bi 6= ai then this contradicts
the fact that the vi are linearly independent.

Theorem 10.5. Let V be a vector space over K. Let (v1, v2, ... vm) be a basis
for V. Then the vectors (w1, w2, ...., wn) , n > m are linearly dependent.Proof.
The proof is by contradiction and by induction. Assume that (w1, w2, ...., wn) are
linearly independent. Then wi 6= O ∀i. Since (v1, v2, ... vm) constitute a basis we
can write

w1=

nX
i=1

viai

Since w1 6= 0 we know ∃ai 6= 0 . W.l.o.g. (we can always renumber the vectors)
we assume a1 6= 0 so we can write

v1 =
1

a1
(w1 −

nX
i=2

viai)

So the vectors (w1, v2, ... vm) generate v1 and since (v1, v2, ... vm) generate the
entire space (w1, v2, ... vm) do the same. (Why ?). Now we want to show that if a
set of vectors (w1..wr, vr+1, ... vm) , 1 ≤ r < m generate the entire space so do the
set (w1..wr+1, vr+2 ... vm). To this end it suffices to show that (w1..wr+1, vr+2 ...
vm) generate vr+1. Since by assumption (w1..wr, vr+1, ... vm) generate the entire
space we can write:

wr+1 =
rX
i=1

biwi +
mX

i=r+1

civi

From our assumption that (w1, w2, ...., wn) are linearly independent and from ex-
ercise 10.3 we have that ∃i s.t. ci 6= 0. W.l.o.g. we assume i = r + 1 and we can
write

vr+1 =
1

cr+1

Ã
wr+1 −

rX
i=1

biwi −
mX

i=r+2

civi

!
and this proves that (w1..wr+1, vr+2 ... vm) generate vr+1 and therefore the en-
tire space. Applying this reasoning repeatedly we can show that (w1, w2, ...., wm)

16



generate the entire space and therefore there are m scalars (d1, d2, ..., dm) such
that

wm+1 =
mX
i=1

diwi

contradicting the initial assumption that (w1, w2, ...., wn) are linearly independent.

Corollary 10.6. Let V be a vector space and suppose that a basis is composed
by n vectors, then every other basis is composed by the same number of vectors.

Definition 10.7. Let V be a vector space with a basis composed by n elements.
The vector space is said to have dimension n. If the vector spaces is composed
only by the O element then it is said to be 0 dimensional while if has space has a
set of linearly independent vectors for every n it is called infinite dimensional.

Theorem 10.8. Let V ba space of dimension n and (v1, ....vn) be a set of linearly
independent vectors. Then (v1, ....vn) constitute a basisProof. We have to show
that (v1, ....vn) generate V. Take w ∈ V. By the previous theorem (v1, ....vn w) are
linearly depndent so we have a0w + a1v1 + ..anvn = O. Since it cannot be a0 = 0
(otherwise we would violate the hypotesis that (v1, ....vn) are linearly independent)
we can express w in function of the (v1, ....vn).

Exercise 10.5. Find a basis and show that is indeed a basis in the space of second
degree polynomials ( a+ bx+ cx2).

11. The vector space <n

We will now focus on a very important vector space, that is the space of or-
dered arrays of n real numbers. In this space a vector is defined as a (row) array
x=
¡
x1 x2 · · · xn

¢
xi ∈ <. The zero vector is defined as O=

¡
0 0 · · · 0

¢
.

The sum of two vectors x,y elements of<n is defined as the vector
¡
x1 + y1 x2 + y2 · · · xn + yn

¢
and the scalar product k x is the vector

¡
kx1 kx2 · · · kxn

¢
. Each element of

a vector is also called a component.

Exercise 11.1. Show that <n together with sum and scalar product defined
above is indeed a vector space.
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All the concepts we have seen in the previous section apply readily in <n. For
example it is to verify that a basis in<n is given by the set of vectors (e1, e2, · · · , en)
where ei is the vector composed by all 0 and 1 in the i

th position (this is also called
canonical basis). From that follows that the dimension of <n is n.

Exercise 11.2. Consider the following subsets of <2 and determine if they are
subspaces:

1. The vectors with the first and second component equal (i.e. (-1,-1), (0,0),(1,1),..)

2. The vectors with positive components.

3. The vectors with integer components.

4. The vectors that solve the following equation: 3x1 + x2 = 0.

Exercise 11.3. Let (x1, x2) and (y1, y2) be two vectors in <2. Show that they are
linearly independent if and only if x1y2 − x2y1 6= 0.

We’ll now define two additional operations in <n.

Definition 11.1. Given x,y vectors in <n we define the (Euclidean) inner product
of the two vectors (xy) as the function :<n×<n → < that associates to the vectors
x and y the number (x1y1+x2y2+ · · ·xnyn). x and y are orthogonal if xy=0 (This
concept has a geometric interpretation in <2).

The scalar product has the following properties easy to verify:

1. (k1x+ k2y)z = k1xz + k2yz with k1k2 constants and x,y elements of <n..

2. xy = yx

3. xx ≥ 0 and xx = 0 if and only if x = O.

Remark 1. Any function that satisfy the properties above is called a scalar prod-
uct.

The following exercise shows why scalar product is so important in economics.
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Exercise 11.4. Italy each year produces 1000 tons of spaghetti and 2000 gallons
of wine with prices of 20 and 30 lire per unit. As intermediate inputs Italians
import 500 tons of grape, 500 tons of wheat and 100 tractors at the price of 10,
20 and 50 lire per unit. Express in vector notation, using the scalar product, the
equation describing the national product of Italy.

Exercise 11.5. Given S subspace of <n consider the space S⊥ defined as
{x : x ∈ <n, xs = 0,∀s ∈ S} , that is the space of vectors orthogonal to all the

elements in S. Show that S⊥ is a subspace.

Exercise 11.6. Consider S⊂ <2 composed by the vectors (t,2t) t∈ <. Find S⊥.

Definition 11.2. The norm of a vector x∈ <n, denoted as kxk, is a function that
associates to every vector the square root of the scalar product of the vector with
itself that is kxk ≡ √xx .≡

pPn
i=1 x

2
i

We are now ready to state and prove two important inequalities:

Theorem 11.3. (Cauchy-Schwarz inequality) Given x,y elements of <n we have:

|xy| ≤ kxk kyk

and the inequality holds with equality if and only if x and y are colinear (∃λ ∈ <
s.t. x=λ y).Proof. Take λ ∈ < and write:

0 ≤
nX
i=1

(xi + λyi)
2 =

nX
i=1

x2i + 2λ
nX
i=1

xiyi + λ2
nX
i=1

y2i

the previous expression can be seen as a quadratic equation in λ and since it must
be always positive its ∆ must be always less or equal to zero therefore:Ã

nX
i=1

xiyi

!2
≤
Ã

nX
i=1

x2i

!Ã
nX
i=1

y2i

!
from which we have

|xy| ≤ kxk kyk
Notice then that if x=λ y then |xy| = kxk kyk follows from the definition of norm
and inner product while if |xy| = kxk kyk then the above ∆ = 0 and therefore
there exist a number λ s.t.

Pn
i=1(xi + λyi)

2 = 0 that in turn implies x and y are
colinear since xi + λyi = 0 ∀i.
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Corollary 11.4. (Triangle inequality) Given x,y elements of <n we have:

kx+ yk ≤ kxk+ kyk

Exercise 11.7. Prove the triangle inequality.

12. Matrices

We will now consider a different object useful in linear algebra that is a matrix.
Let K be a field and m and n two integers (m,n≥ 1). A matrix of dimension m×n
is the following array of elements from the field K:⎛⎜⎜⎜⎝

a11 a12 · · · · · · a1n
a21 a22
...
am1 am2 amn

⎞⎟⎟⎟⎠
The matrix has m rows and n columns and the first index of ajk denotes its

row while the second denotes its column. With the notation Ai· we denote the i
th

row of A while with A·i the i
th column. A matrix is said to be square if m=n.

Addition and scalar multiplication for matrices are analogous to those defined for
vectors in <n namely the sum of two m×n matrices A,B is an m×n matrix (C)
with generic element cjk = ajk + bjk while the scalar product of a matrix A and
a scalar k is the matrix B with generic element bjk = kajk. It is straightforward
to show that the set of matrices of a given dimension with addition and scalar
product defined above is a vector space: in this space the zero element is given by
the matrix in which each element is equal to 0. The space of matrices of dimension
m×n over K is often denoted by M(m,n)(K).

Exercise 12.1. What is the dimension of the space of m×n matrices ? Give a
basis for this space.

Definition 12.1. Let A be a (m×n) matrix. the (n×m) matrix B is called the
transpose of A (denoted also as A0) if bjk = akj. In other words the transpose of a
given matrix is obtained by changing rows into columns and viceversa. A matrix
A is symmetric if A = A0.
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Definition 12.2. Let A be a (n×n) square matrix. The elements ( a11, a22, ..., ann)
are called diagonal elements or elements on the main diagonal. A matrix with all
zeros except on the main diagonal is called a diagonal matrix. A diagonal matrix
in which aii = 1 ∀i is called an identity matrix and is denoted by In.

We will now introduce the concept of matrix multiplication. Given A (m×n)
matrix and B (n×q) we define the product between A and B the matrix C=AB
with generic element given by cjk =

Pn
i=1 ajibik = aj1b1j + aj2b2j + ... + ajnbnj.

Notice that AB6= BA (Actually if AB is well defined BA may fail to be). Notice
also that if A is ( m × n) then AIn = A. From now on when we write AB it
is assumed that the product exist. We list below two properties of the matrix
product that are straightforward (but boring) to prove. Let A,B,C be matrices
and k a scalar then

A(B + C) = AB +AC

A(kB) = k(AB)

A(BC) = (AB)C

Definition 12.3. A square matrix A of dimension n is said to be invertible (or
non singular) if ∃ a matrix B of dimension n s.t.

AB = BA = In

B is called the inverse of A and is denoted by A−1.

Exercise 12.2. Show that if A is invertible then its inverse is unique.

Exercise 12.3. Find the inverse of the matrix:

⎛⎝ 1 0 0
0 2 0
0 0 3

⎞⎠ .
Later, when we will introduce the concept of determinant we will present a

general method for finding the inverse of a matrix.

Exercise 12.4. Finally we give some properties of the operation of matrix trans-
position and inversion.

1. (AB)0 = B0A0 (∗), (A+B)0 = A0 +B0, (A0)0 = A , (kA)0 = kA0

2. (ABC)0 = C 0B0A0 (*)
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3. If A and B are invertible the (AB) is invertible and (AB)−1 = B−1A−1 (*)

4. (A−1)0 = (A0)−1

Exercise 12.5. Prove the starred properties above.

Exercise 12.6. We define the trace of a square matrix (tr(A)) as the sum of the
elements on its main diagonal. Given two n dimensional matrices A,B prove that
tr(AB) = tr(BA).

Exercise 12.7. Find all 2×2 matrices satisfying AA = O. (nilpotent matrices)

Exercise 12.8. Find a 2×2 matrix satisfying AA = A. (idempotent matrix).

13. Linear mappings

In this section we present the class of functions that are the object of study of
linear algebra.

Definition 13.1. Let V and W be vector spaces over the field K. A linear map-
ping is a map F:V→W that satisfy the following two properties

1. ∀u, v ∈ V F (u+ v) = F (u) + F (v)

2. ∀u ∈ V and c ∈ K F (cu) = cF (u).

Example of linear mapping are easy to find. For example the map P:<n → <m
( n > m) is called a projection if P(x1, x2, ... xn) = (x1....xm); it’s easy to show
that a projection is linear.

Exercise 13.1. Consider the mapping P:<n → <m defined as P(x) = Ax where
A is (m×n) matrix and x is a column vector in <n. Show that it is linear.

We will now prove a very useful property of linear mappings:

Theorem 13.2. Let V and W be vector spaces and let OW and OV be the
respective zero elements. Let F: V → W be a linear map. Then F(OV ) =
F(OW ).Proof. From linearity we have F(v+ OV ) = F(v ) + F(OV ) ∀v ∈ V. On
the other hand v+ OV = v and therefore F(v+ OV ) = F(v ). We conclude that
F(v ) + F(OV ) =F(v ) and therefore F(OV ) = OW .
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We will now describe some important characteristics a linear mapping (F:V →
W ) might have. First of all we define the image of F (Im(F ) as the set {F (v) : v ∈ V }.
Then we say that the mapping F is :

• Injective(or 1 to 1) , if ∀u, v ∈ V u 6= v → F( u) 6= F( v ).

• Surjective (or onto) if Im(F ) =W.

• Bijective if it is injective and surjective.

Definition 13.3. The Kernel (or Null-space) of F (Ker(F )) is the set {v : F (v) = 0} .

It is straightforward to prove that the Kernel of a linear map is a subspace.

Exercise 13.2. Consider the map F : <→ < = x2−1. Is the Kernel of this map
a subspace ?

Theorem 13.4. Ker(F ) = {O} ⇐⇒ F is injectiveProof. Suppose Ker(F ) =
{O} and suppose v and w are such F (v) = F (w). We have that F (v) −F (w) =
O and by linearity F (v − w) = O = F ( O). Therefore v − w = O and v = w.
Suppose now F is injective therefore ∃!v : F ( v) =O but by linearity v = O,
therefore Ker(F ) = O.

Theorem 13.5. Let F:V →W be an injective linear map. Then if ( v1, v2, ..., vn)
are linearly independent in V , ( F (v1), F (v2), ..., F (vn)) are linearly independent
in W.

Theorem 13.6. Let F:V →W be a linear map. Im(F ) is subspace of W. Im(F )
is also called the rank of F.

Exercise 13.3. Prove the previous 2 theorems.

We are now ready to prove a very important theorem

Theorem 13.7. Let F:V →W be a linear map. Then

dimV = dimKer(F ) + dim Im(F )

Proof. Let’s call s > 0 the dimension of Im(F ) , q ≥ 0 the dimension of Ker(F )
and n the dimension of V. Let (w1, w2, ..ws) be a basis of Im(F ). Then there
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will be elements vi s.t. wi = F (vi). Then let (u1, u2,...uq) be a basis for Ker(F ).
We want to show that (v1.... vs, u1, ..., uq) is a basis for V. To this end we first
have to show that they generate V and then that they are linearly independent.
Consider v ∈ V. Since the w0s are a basis for Im(F ) there exist s numbers s.t
F (v) = x1w1 + ...+ xsws = x1F (v1) + ....xsF (vs) and by linearity we have:

F (v − x1v1 − .....− xsvs) = O

but this means v − x1v1 − .....− xsvs lies in Ker(F ) and that we have q numbers
satisfying

v − x1v1 − .....− xsvs = y1u1 + ..+ ysuq
implying

v = x1v1 + .....+ xsvs + y1u1 + ..+ ysuq

and therefore (v1.... vs, u1, ..., uq) generate V. To show that (v1.... vs, u1, ..., uq) are
linearly independent consider the linear combination

x1v1 + .....+ xsvs + y1u1 + ..+ ysuq = O

Applying F to both sides and using the facts F (ui) = O and F (vi) = wi we have

x1w1 + .....+ xsws = O

that implies xi = 0 since the w are a basis and therefore linearly independent.
This in turn implies that

y1u1 + ..+ ysuq = O

and since the u0s are a basis we have yi = 0. Hence (v1.... vs, u1, ..., uq) are linearly
independent.

Corollary 13.8. Let F:V →W be a linear map and assume dim(V ) = dim(W ).
If Ker(F ) = O or if Im(F )= W then L is bijective.

13.1. Composition and inverse of linear maps

Let U, V,W be vector spaces and let F : U → V and G : V → W be mappings,
we define the composite mapping G ◦ F : U → W, to be the mapping G(F (t)).
We then define the identity map as the map IW :W →W = w∀w ∈W,
and finally we can define the inverse map:
Let F : U → V . We say that F has an inverse if there exist a mapping

G : V → U such that
F ◦G = IU and G ◦ F = IV
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Theorem 13.9. Let F : U → V . F has an inverse if and only if it is bijective.

The previous concepts apply to general mappings while now we will state two
theorems that are relative to linear mappings.

Theorem 13.10. Let U, V,W be vector spaces and let F : U → V and G : V →
W be linear mappings, then the composite mapping G ◦ F : U →W is linear.

Theorem 13.11. Let F : U → V be a linear mapping. If F has an inverse
G : V → U then it is linear.

Exercise 13.4. Proof the previous theorem.

Theorem 13.12. A linear map that is surjective and has Kernel equal to {O}
has an inverse.

A linear map that has an inverse is also called an isomorphism. If we can find
an isomorphism between two vector spaces V and W the two spaces are called
isomorphic.

Exercise 13.5. Let U, V,W be vector spaces and let F : U → V and G : V →W
be isomorphisms. Show that G◦F : U →W an isomorphism and that (G◦F )−1 =
F−1G−1.

14. Bases Matrices and Linear Maps

In an exercise in the previous section we have seen how a (m×n) matrix generates
a linear map F : <n → <m. It is also easy to prove the converse with the following
theorem:

Theorem 14.1. Let F : <n → <m be a linear map. Then ∃!A ∈ Mm×n s.t.
F (x) = Ax, x ∈ <n.Proof. Let {E1....En} be the canonical (column) basis in <n
and {e1....en} be the canonical (column) basis in <m. Any (column) vector x ∈ <n
can be written as:

x = x1E1 + ....+ xnEn xi ∈ <
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using linearity we have that

F (x) = x1F (E1) + ....+ xnF (En)

Since L(Ei) ∈ <m we can write it as :

F (E1) = a11e1 + ....+ am1em

....

F (En) = a1ne1 + ....+ amnem

and therefore

F (x) = x1(a11e1 + ....+ am1em) + ..+ xn(an1e1 + ....+ anmem)

= (a11x1 + ...+ a1nxn)e1 + ...+ xn(am1x1 + ...+ amnxn)em

or

F (x) =

⎛⎜⎝ a11 · · · a1n
...

...
am1 · · · amn

⎞⎟⎠
⎛⎜⎝ x1

...
xn

⎞⎟⎠ = Ax

To show that the matrix is unique assume there is another matrix B such that
F (x) = Bx. Since it must be Bi·x = Ai·x ∀x it follows also that Bi· = Ai· ∀i and
therefore B = A.
Now that we have established a one to one relation between matrices and linear

mappings we can interpret the theorem relating the dimension of the domain of
a function with the dimension of its kernel and its image. We can infact write a
linear map as

f : V →W = Ax = A1x1 + ...+Anxn

where A1, ...An are the column vectors of A. So the image of A (or its rank)
coincides with the space spanned by its column vectors. So if the image has
dimension n it must be that the matrix has n linearly independent vectors. This
conclusion is important for square matrices that are surjective linear mappings.
We have seen that surjective linear mappings are invertible if and only if the
dimension of their Kernel is 0. This implies that the linear mapping associated to
a square matrix of order n is invertible if and only if the dimension of its image
is n but this in turn is true if and only if the column vectors of A are linearly
independent. We can therefore state the following theorem:
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Theorem 14.2. A linear mapping associated with a square matrix is invertible
if and only if its columns are linearly independent.

Exercise 14.1. Find the matrix associated with the identity map from <3 → <3
and with the projection mapping from <3 to <2.

Exercise 14.2. Consider F : <n → <m. Show that a necessary and sufficient
condition for F to be invertible is n = m and that the columns of the matrix
associated to the mapping are linearly independent.

In the previous theorem we have seen how the matrix associated with a linear
mapping depends on the basis chosen for the spaces mapped from the function.
We will now consider a more general statement that will consider arbitrary bases.
First is important to observe that a more general (n dimensional) vector space is
isomorphic to <n ; to see this consider V a vector space and (v1.... vn) a basis for
that space; then ∀v ∈ V we have v = x1v1+ ...+ xnvv with xi numbers. Consider
now the linear mapping <n → V given by (x1, ...xn) → x1v1 + ... + xnvv that is
the map that associates to every vector its coordinates respect to a given system
of bases.

Exercise 14.3. Show that this last map is linear and it is an isomorphism.

Let’s denote with Xβ(v) the vector of coordinates of v with respect to the basis
β. Then using the previous theorem and the previous observation we can prove
the following:

Theorem 14.3. Let V and W be vector spaces with basis β and β0 respectively,
and let F : V → W be a linear map, then there is a unique matrix, denoted by
Mβ0

β (F ) such that:

Xβ0(F (v)) =M
β0

β (F )Xβ(v)

Corollary 14.4. Let V a vector space and let β and β0 bases for V and Id denote
the identity mapping, then

Xβ0(v) =M
β0

β (Id)Xβ(v).

this corollary tell us how we can change the bases in a vector spaces premulti-
plying vectors by a matrix. We will now show that this matrix is invertible. With
simple matrix algebra we can proof the following:
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Theorem 14.5. Let V,W,U be vector spaces and β,β0,β00 be their basis. Let
F : V →W and G :W → U be linear maps then we have

Mβ0

β00(G)M
β
β0(F ) =M

β
β00(G ◦ F )

Consider now V=W=U and F = G = Id and β00 = β then we have

Mβ0

β (Id)M
β
β0(Id) =M

β
β (Id)

but since by definition that Mβ
β (Id) = I we have that

Mβ0

β (Id)M
β
β0(Id) = I =M

β
β0(Id)M

β0

β (Id)

so the matrices that change coordinates between β and β0 are invertible. We’ll
finally get to the concept of diagonalization of a linear map. Using the previous
theorem we can prove that if F : V → V is a linear map and β , β0 are bases for
V then:

Mβ0

β0 (F ) = N−1Mβ
β (F )N

with N = Mβ0

β (Id)

Exercise 14.4. Prove the previous equality

So if F : V → V is a linear map we say that a basis β diagonalize F if Mβ
β (F )

is a diagonal matrix. F is diagonalizable if such a base exists. Finally using the
previous equality we can easily prove that F : V → V is diagonalizable if and only
if there exists an invertible matrix N such that N−1Mβ

β (F )N =M 0 is a diagonal

matrix. Mβ
β (F ) and M

0 are also called similar matrices reflecting the fact that
they are associated to the same linear map but under different bases. Notice that
unfortunately not all linear maps are diagonalizable.

15. Determinants and Inverse Matrices

In this section we will introduce the notion of determinant, a number associated
with a square matrix, that can tell us whether the matrix (and therefore the
function associated to it) is invertible and is useful in computing the inverse matrix
(if it exists).We have seen that a square matrix is invertible iff its columns are
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linearly independent. We will show in class that linear independence of vectors has
a geometrical interpretation: when vectors are linearly independent a particular
space has non zero measure (By measure here we mean area in <2 and volume
in <3). The determinant of a square matrix give us the measure of that area. In
particular the determinant will be zero whenever this space will have measure 0 or
when the columns(rows) of a square matrix are linearly dependent, and therefore
the matrix is not invertible.

Definition 15.1. Let A be a square matrix of order n.We call determinant of A
, or det(A), or |A| the number:X

(−1)ja1j1a2j2 · · · anjn

where the summation is extended to all the possible n! permutations (j1, j2, · · · jn)
of the first n integers and j represent the number of inversions of that permutation
with respect to the fundamental one given by (1, 2, ..., n).

Exercise 15.1. Compute, using the definition, the determinant of the following

two matrices:

µ
a b
c d

¶
,

⎛⎜⎝ a11 · · · a1n

0
. . .

...
0 0 ann

⎞⎟⎠ .
Exercise 15.2. Prove that if c is a number and A is a square matrix of order n
then det(cA) = cn detA

There are many properties of the determinants and here we will mention a few
that we will use in deriving methods for computing the determinant.

1.

detA =
X
(−1)ja1j1a2j2 · · · anjn =

X
(−1)iai11ai22 · · · ainn with i = j

2.
detA = detA0

3. If in a matrix we move a row(column) of a matrix p positions to the top or
to the bottom (left or right) its determinant is multiplied by (−1)p.
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4. If we swap two rows or two colums the determinant changes its sign. Notice
infact that swapping two rows imply moving the lower p positions above and
the upper p−1 positions below so the determinant by the previous property
is multiplied by (−1)2p−1 = −1 ∀p

5. If two rows (columns) are equal the determinant is 0. If we switch the two
equal rows by property 4 the determinant has to change sign but since the
matrix remains the same also its determinant has to be the same. Therefore
it must be detA = 0

6. If the ith row (column) of a matrix A is the sum of n vectors ( v1, ..vj, ..vn)
then the determinant of A is given by the sum of determinants of the n
matrices equal to A but with the vj in the i

th row (column). That is if

A =

⎛⎜⎜⎜⎝
A1·
...

Bi· + Ci·
...

⎞⎟⎟⎟⎠ then detA = det

⎛⎜⎜⎜⎝
A1·
...
Bi·
...

⎞⎟⎟⎟⎠+ det
⎛⎜⎜⎜⎝
A1·
...
Ci·
...

⎞⎟⎟⎟⎠ .
7. (Binet’s theorem)

det(AB) = det(A) det(B)

Exercise 15.3. Prove that if A is a square matrix that has inverse A−1 then
det(A−1) = 1/det(A).

we are now ready to prove the first and second Laplace theorems that are
useful in computing determinants and inverse matrices.

Definition 15.2. Given a square matrix A the algebraic complement (or cofactor)
of its element aij (call it Aij) is given by the determinant of the matrix obtained
erasing the ith row and the jth column from A (call it Mij) times (-1)

i+j. So
Aij = (−1)i+jMij.

Theorem 15.3. If the ith row (column) of a square matrix A is equal to the vector
aij·ej (The jth canonical bases times a scalar aij) then detA = (−1)i+jaijMij.Proof.
Consider a particular A (call it A0 ) that has the first row is equal to aij · e1. In
this case from the definition of determinant we have that:

detA0 =
X
(−1)ja1j1a2j2 · · · anjn

= aij
X
(−1)ja2j2 · · · anjn j2, ...jn 6= 1

= aijM11
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Consider now the matrix A with the ith equal to the vector ej. This matrix can

be reduced to the following matrix

⎛⎜⎜⎜⎝
aij 0 · · · 0
0 ahk
...
0

⎞⎟⎟⎟⎠ by moving the ithrow of

i-1 positions and the jth column of j-1 position. Using therefore the property 3 of
determinants above, the fact that i + j − 2 is of the same class (odd or even) as
i+ j, and how we compute the determinant of A0 we have:

detA = (−1)i+jaijMij = aijAij

Theorem 15.4. (First Laplace theorem)The determinant of a square matrix A is
computed by summing the product of the elements of any line (row or column) by
their algebraic complement.Proof. Consider for example the jth row ( ai1, ..., ain).
It can be written as ( ai1e1+ ...an1en). Using property 6 of the determinants above
and the previous theorem we have det(A) =

Pn
j=1Aijaij

This theorem provide us with a recursion for computing determinants of matrix
of order n.

Theorem 15.5. (Second Laplace theorem) The sum of the products of the ele-
ment of any line of a square matrix with the algebraic complement of the elements
of a parallel line is equal to 0.Proof. Consider the expression

nX
j=1

apjAqj p 6= q

this is the expression for the the determinant of the matrix with the pth and the
qth rows that are equal. By property 5 this is 0.

The two theorems can be summarized in the following expression (for the
rows):

nX
j=1

apjAqj = det(A) if p = q

= 0 if p 6= q
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and a similar one for the columns:

nX
j=1

ajpAjq = det(A) if p = q

= 0 if p 6= q

The two theorems can be used to find the inverse of a matrix. Define the
adjugate matrix of a square matrix A ( adg(A) ) to be the matrix in which each
element is substituted by its algebraic complement, that is

adg(A) =

⎛⎜⎝ A11 A1n
...
An1 · · · Ann

⎞⎟⎠
It is easy to prove using the Laplace theorems the following equality:

[Adg(A)]0A = A [Adg(A)]0 = det(A)I

Exercise 15.4. Prove the previous equality.

that in turn, if the determinant is different from zero can be used to find the
following expression for the inverse of A.

A−1 =
1

det(A)
[Adg(A)]0

We conclude this section stating (without proof, but it would be a good exercise
to give it a try) a theorem that syntesize the relation between determinants and
invertibility of a matrix:

Theorem 15.6. Let A be a square matrix. Then the following conditions are
equivalent

• A is invertible

• the rows of A are linearly independent

• the columns of A are linearly independent

• det(A) 6= 0.
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16. Systems of linear equations

In this section we will apply some of the theory we have seen so far to the task of
solving systems of linear equations.In particular we will deal with the problem of
existence, uniqueness and determinacy of solutions.
Let define the following system of linear equations

a11x1 + .....+ a1nxn = b1
· · ·

am1x1 + .....+ amnxn = bm

that can be represented as
Ax = b

where A is a (m× n) matrix, x ∈ <n, b ∈ <m. The system

Ax = O

is called the homogeneus system associated with Ax = b. Notice that the matrix
A is associated with a linear mapping f : <n → <m. The first question we ask is
about existence of solutions. To this purpose we have the following theorem

Theorem 16.1. (Rouché Capelli) The system Ax = b has a solution ∀b if and
only if the rank of A is equal to the rank of A|b. Proof. If there is a solution
to the system then b belongs to the space spanned by the column vectors of A
therefore A|b and A have the same number of linearly independent vectors and
therefore the same rank. If A and A|b have the same rank then they have the same
number of linearly independent vectors so A|b must constitute a set of linearly
dependent vectors and b can be expressed as a linear combination of the column
vectors of A.

Corollary 16.2. Consider a system Ax = O with A ∈ M(m,n) with n> m
(Homogeneous with more unknowns than equation) then the system has always
a solution (excluding the trivial one).

Theorem 16.3. Consider the system Ax = O with A ∈M(m,m) (Homogeneous
with unknowns = equations) then if the rank of A is m then the only solution is
x = O.

33



We have therefore seen that establishing the rank of a matrix (i.e. the num-
ber of its linearly independent column vectors) is important in determining the
existence of solutions. Now we’ll see some result concering the uniqueness of the
solution.

Theorem 16.4. Let x0 be a solution (if it exists) of the system Ax = b, A ∈
M(m,n) then we have:

• x1 is a solution if and only if x1 = x0 + z where z ∈ Ker(FA).

• Ax = b has an unique solution if and only if the Rank of A is equal to n.
Corollary 16.5. Consider the systemAx = b with A ∈M(m,m) (square matrix)
then if the rank of A is m then it has an unique solution.

Determining the rank of a matrix is therefore important in estabilishing the
existence of solutions to the system associated with that matrix. We therefore
state a theorem that help us determining the rank of a matrix (this theorem is
called by Strang the fundamental theorem of linear algebra)

Theorem 16.6. Let F : <n → <m be a linear map and A be the matrix associ-
ated to it. A0 defines therefore a mapping F 0 :<m → <n. Let’s also denote with r
the rank of A (Dim(Im(F ))) then we have the following result:
Rank(A0) = Rank(A) = r

The previous theorem states that the number of linearly independent row of
a matrix is the same as the number of linearly independent columns. An obvious
consequence of the theorem is that if A ∈ M(m,n) then Rank(A) ≤ min(m,n).
As we will discuss in class this theorem has important consequences in relating
uniqueness and existence of solutions.
Finally we’ll briefly mention methods for finding solutions, provided that they

exist.
In a system Ax = b where A is a (n×n) invertible matrix, x ∈ <n, b ∈ <n the

solution can be find simply by inverting the matrix so x = A−1b and a particular
case of this procedure is the famous Cramer’s rule that states

xs =
det(Abs)

det(A)

where Abs is the matrix A with the s
thcolumn substituted by the vector b.

When we deal with non square systems the most efficient method for solving
them is the so called triangularization that will be discussed in class with the help
of examples.
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17. Eigenvalues and eigenvectors

In this section we will deal with the space Cn over the field C. Addition and
scalar multiplication are defined (mutatis mutandis) as in <n . The notion of
scalar product though is slightly different. If x and y are elements of Cn we define
their scalar (or hermitian) product as:

xy =
nX
i=1

xiyi

where yi is the conjugate of yi.

Exercise 17.1. Prove that if x and y are elements of Cn xy = yx and that
xx ≥ 0.

The concept of orthogonality is analogous for vectors in Cn.

Consider now the following linear dynamical system:

x(t+ 1) = Ax(t)

where A is a square matrix of order n and x(t) ∈ <n. Economists are often
interested in solutions to this system that satisfy

x(t+ 1) = Ax(t) = λx(t)

∀t, λ ∈ C (The set of complex numbers). These solutions are interesting for
two reasons; firstly they satisfy x(t)/x(t+1) = λ for every t and secondly because
the expression for x(t) can be readily obteined as x(0)λt. The existence of this
kind of problems suggest the following

Definition 17.1. If A is a square (real) matrix λ ∈ C, x ∈ Cn, x 6= O satisfying

Ax = λx

we say that λ is an eigenvalue of A and x is an eigenvector of A associated with
the eigenvalue λ.

Exercise 17.2. Prove that if A is a square matrix with eigenvalue λ then the
space of eigenvectors associated with λ plus the O vector constitute a vector
space (This is also called an eigenspace).
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We will now present some results that will help us in finding eigenvalues and
eigenvectors of a matrix.

Theorem 17.2. Let A a square matrix and let λ be a scalar. λ is an eigevalue
of A if and only if (λI−A) is not invertible ( det(λI−A) = 0).Proof. Assume λ
is an eigenvalue of A. Then there exists x ∈ Cn, x 6= 0 satisfying λx− Ax = 0 or
(λI − A)x = 0 so the linear mapping defined by (λI − A) has non empty Kernel
and is therefore non invertible. Assume now (λI−A) is non invertible, then it has
non empty Kernel and therefore there is an x 6= 0 satisfying (λI − A)x = 0 −→
λx = Ax and that therefore λ is an eigenvalue of A.

The previous theorem gives us an easy way of finding the eigenvalues of a
square matrix, that is to find the zeros of the equation in λdet(λI −A) = 0. This
equation is called the characteristic equation of A. Remembering the definition of
determinant it’s easy to see that the equation is a polynomial of degree n (The
only term that contains λn is the one relative to the fundamental permutation),
and that by the fundamental theorem of the algebra it has n (real or complex)
roots.

Exercise 17.3. Show that 0 is an eigenvalue of A if and only if det(A) = 0.

Exercise 17.4. Find the matrix that has the following characteristic equation:

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

Exercise 17.5. Find eigenvalues and eigenvectors of

µ
0 2
1 4

¶
,

⎛⎝ 0 0 0
1 0 −1
0 1 0

⎞⎠ .
Eigenvalues and eigenvectors can be efficiently used to perform diagonalization

(when possible) or triangularization of matrices. Let A be a square matrix of order
n and let λ1,λ2, ...λn be its eigenvalues. Let also x1, ...xn be n correspondent
eigenvectors so that

Axi = λixi i = 1, ..n

these relations can be written in matrix form as

AX = XΛ
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where Λ =

⎛⎜⎝ λ1 0 0

0
. . . 0

0 0 λn

⎞⎟⎠ and X =
¡
x1 · · · xn

¢
. We defined before the

concept of similarity for matrices so now we can state the following theorem:

Theorem 17.3. A square matrix A is similar to a diagonal matrix Λ , that is

A = S−1ΛS

with S of the same order of A if and only if A has n linearly independent eigen-
vectors.

Exercise 17.6. Show that the following matrix:

µ
1 1
0 1

¶
is not diagonalizable.

As we have seen not every matrix is diagonalizable. A sufficient condition for
diagonalization is provided by the following theorem:

Theorem 17.4. Eigenvectors associated to distinct eigenvalues are linearly inde-
pendent.

Finally we mention that an important result in linear algebra guarantees for
every square matrix the existence of a triangular matrix similar to it with the
eigenvalues on the main diagonal.

18. Diagonalization of symmetric matrices and quadratic
forms

A function Q : <n → < = (a1x1 + a2x2 + ...anxn)
2 is called a quadratic form.

Every quadratic form can be expressed as

Q(x) = x0Ax

where A is a symmetric matrix. Notice that we can always find a matrix A that
is symmetric. Suppose infact A is not symmetric then we have

Q(x) = x0Ax =
1

2
x0Ax+

1

2
x0Ax =

1

2
x0Ax+

1

2
(x0Ax)

0
=

1

2
x0Ax+

1

2
x0A0x = x0(

A+A0

2
)x
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and A+A0

2
is symmetric.As an example suppose x ∈ <2 consider the quadratic form

Q(x) = x21 + 10x1x2 + x
2
2. It can be written as¡

x1 x2
¢µ 1 5

5 1

¶µ
x1
x2

¶
Definition 18.1. A quadratic form Q(x) is definite positive(negative) if ∀x 6= O
we have Q(x) > 0 (Q(x) < 0). It is semidefinite positive (semidefinite negative) if
∀x we have Q(x) ≥ 0 (Q(x) ≤ 0) with equality with some x 6= O.

The nature of a quadratic form is linked to the sign of its eigenvalues and
therefore we provide the following theorem for the eigenvalues of symmetric ma-
trices.

Theorem 18.2. The eigenvalues of a square symmetric matrix are all real.

Theorem 18.3. The eigenvectors associated to distinct eigenvalues for a sym-
metric matrix are linearly independent and orthogonal.

Before we introduce the next result we mention that n vectors ( v1, v2, ...vn)
are said orthonormal if we have vivj = 0 i 6= j andkvik = 1 ∀i. We then define an
orthonormal (square) matrix a matrix that has orthonormal columns.Let F be an
orthonormal matrix then we have FF 0 = I and consequantly F 0 = F−1.

Theorem 18.4. (Spectral theorem) If A is a square symmetric matrix then we
can always find an orthonormal matrix F (that has n orthonormal eigenvectors
of A as columns) such that

A = FΛF 0

where Λ is the diagonal matrix formed with the eigenvalues of A.

From the previous theorem is straightforward to prove the following:

Theorem 18.5. Necessary and sufficient condition for a quadratic form Q(x) =
x0Ax to be:

• Positive definite is to have all positive eigenvalues

• Positive semidefinite is to have all non negative eigenvalues with at least one
equal to 0
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• Negative definite is to have all negative eigenvalues

• Negative semidefinite is to have all non positive eigenvalues with at least
one equal to 0.

Part III

Multivariate calculus
In the first part of 897 you have seen functions defined from < to <. Unfortunately
in economics most of the times they are not enough. Consider for example a
technology that relates hours worked and capital employed to output produced,
or suppose that an individual gets utility from a basket of different goods. In
these cases we need to consider functions defined on more complex domains. In
particular in this section we will study the class of functions defined from <n to
<m. Passing from < to <n is not completely straightforward since < is a completely
ordered set (that is given two points in < either one is bigger or of the other or
they are equal) while <n is not (Consider the vectors in <2 (0,1) and (1,0)). When
we move from one point to the other in < there is only one direction we can go,
in <n there are infinitely many.

19. Basic topology in <n

We have already described <n and some of its properties in the previous section.
In particular remember the concept of norm that is the function that is defined
as kxk ≡ √xx .≡

pPn
i=1 x

2
i . With the help of the norm we define the concept of

distance between two vectors in <n.

Definition 19.1. Given x and y elements of <n their distance is defined as the
function d : <n ×<n → < s.t.

d(x, y) = kx− yk

d is also called the Euclidean distance.

In the rest of this part the notation d(x, y) or kx− yk to denote the distance
between two points will be used interchangeably.
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Exercise 19.1. Check that the Euclidean distance has the following properties.

• d(x, x) = 0

• d(x, y) > 0 if x 6= y.

• d(x, y) = d(y, x)

• d(x, y) ≤ d(x, z) + d(z, y)

where x, y, z are elements of <n.

Remark 2. Every function that satisfy the properties above is said to be a dis-
tance.

Remark 3. Any set that is equipped with a distance is called a metric space.
For example Philadelphia, New York and San Francisco together with the road
distance constitute a metric space.

Definition 19.2. Let x ∈ <n and let ² > 0 be a number then:

• the set N²(x) = {y ∈ <n : d(x, y) < ²} is called an open neighborhood (open
ball)

• the set N ²(x) = {y ∈ <n : d(x, y) ≤ ²} is called a closed neighborhood
(closed ball)

Definition 19.3. Let S be a subset of <n and assume x ∈ S. We say that x is
an interior point of S if ∃² > 0 s.t. N²(x) ⊆ S.

Definition 19.4. A set S ⊆ <n is open if every point in the set is interior to S.

Definition 19.5. A set S ⊆ <n is closed if its complement <n/S is open

Definition 19.6. Let S be a subset of <n and assume x ∈ <n. We say that x is
an adherent point of S if ∀² > 0 N²(x) contains at least one point of S.

Definition 19.7. Let S be a subset of <n and assume x ∈ <n. We say that x
is an accumulation point of S if ∀² > 0 N²(x) contains at least one point of S
different from x.
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Notice that accumulation and adherent points for a set do not need to belong
to that set. Clearly all points that belong to a set are adherent points but this
is not true for accumulation points. If a point belong to a set but it’s not its
accumulation point is called an isolated point.

Theorem 19.8. If x is an accumulation point of S then every open ball centered
in x contains infinitely many points of S.

We finally characterize close sets in a different way

Theorem 19.9. A set S ⊆ <n is closed if and only if it contains the set of all its
adherent points (Also called the closure of S and denoted by S.)

Theorem 19.10. A set S ⊆ <n is closed if and only if it contains the set of all
its accumulation points (Also called the derived set of S and denoted by S0)

Notice finally that a set can be nor close neither open (Consider the set [0, 1)
in <) and can be both closed and open (Consider <n).

Exercise 19.2. Take A,B open subsets of <n, show that A ∪ B and A ∩ B are
open too.

Definition 19.11. A set S ⊆ <n is bounded if ∃² > 0 s.t S ⊂ N²(x) for some
x ∈ <n.

Theorem 19.12. (Bolzano-Weierstrass) If S is a bounded set in <n that contains
infinitely many points then there is at least a point in <nthat is an accumulation
point for S.

Definition 19.13. A collection of sets F is said to be a cover of a set S if S ⊆
∪A∈FA. The cover is open if every set in the collection is open.

Definition 19.14. A set S ⊆ <n is compact if and only if every open covering
contains a finite subcover, that is a finite subcollection that also cover S.

Exercise 19.3. Show, using the definition, that the set (0, 1] in < is not compact.

Theorem 19.15. A set S ⊆ <n is compact if and only if it is closed and bounded.

Theorem 19.16. A set S ⊆ <n is compact if and only if every infinite subset of
S has an accumulation point in S.

Theorem 19.17. Let T be a closed subset of a compact metric space. Then T
is compact
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20. Convergent sequences in <n

Definition 20.1. A sequence {xn} of points in <n is said to converge to p ∈ <n
( xn → p) if

∀² > 0 ∃N s.t. d(xn, p) < ² ∀n > N

Remark 4. The previous definition imply xn → p in<n if and only if d(xn, p)→ 0
in <.

Exercise 20.1. Prove that if {xn} is a convergent sequence in <n then its limit
is unique.

Definition 20.2. A subsequence of {xn} is a sequence {sk(n)} whose nth term is
xk(n) where k : N → N satisfies k(m) > k(n) if m > n.

Theorem 20.3. A sequence converges to p if and only if every subsequence con-
verges to p.

Notice that a sequence {xn} converges to p if and only if the univariate se-
quences {xin}→ pi i = 1, ...n.

Definition 20.4. A sequence {xn} of points in <n is called a Cauchy sequence if

∀² > 0 ∃N s.t. d(xn, xm) < ² ∀n,m > N

Exercise 20.2. Show that every convergent sequence is a Cauchy sequence.

Exercise 20.3. Find an example of a subset in <n in which a Cauchy sequence
is not a convergent sequence.

Definition 20.5. A metric space in which every Cauchy sequence converges is
called a complete metric space.

Theorem 20.6. Let S ⊆ <n and let p be an accumulation point of S. Then there
is a sequence {xn} ∈ S and s.t. {xn} → p.Proof. Since p is an accumulation
point for S for every integer n there is a point xn ∈ S s.t. d(xn, p) < 1

n
. Letting

n go to infinity we have that d(xn, p)→ 0 and using the remark above xn → p

Theorem 20.7. Let S ⊆ <n then S is compact if and only if every sequence
{xn} ⊂ S has a convergent subsequence.
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21. Multivariate functions: Limits and continuity

In this section we will focus on functions from <n to <.

Definition 21.1. Let S ⊆ <n and T ⊆ < we define a function f : S → T a
mapping that associates a number f(x) ∈ T ⊆ < to every vector x ∈ S ⊆ <n.

Definition 21.2. Let S ⊆ <n and T ⊆ <, let f : S → T , let p be an accumula-
tion point of S ,and let b be point in <. If ∀² > 0 ∃δ > 0 such that d(x, p) < ²,
x ∈ S, x 6= p implies |f(x)− b| < δ then we write

lim
x→p

f(x) = b

An alternative definition is the following.

Definition 21.3. If ∀N²(b) ∃Nδ(p) such that

x ∈ Nδ(p) ∩ S =⇒ f(x) ∈ N²(p), x 6= p

then we say
lim
x→p

f(x) = b

Notice that in the definition of limit we do not require neither p to be in the
range of f nor b to be to be in its image.

Theorem 21.4. Assume that p is an accumulation point of S and assume b ∈ T,
then

lim
x→p

f(x) = b

if and only if for every sequence {xn}→ p , {xn} ∈ S/{p}

lim
n→∞

f(xn) = b

The usual properties of limits you’ve already seen in < apply readily for limits
of functions from <n to <. In particular if limx→p f(x) = a and limx→p f(x) = b
then

• limx→p[f(x) + g(x)] = a+ b
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• limx→p kf(x) = ka ∀k ∈ <

• limx→p f(x)g(x) = ab

• limx→p f(x)g(x)
= a

b
if b 6= 0

Exercise 21.1. Prove that if limx→p f(x) exists then it is unique.

We are now ready to introduce the concept of continuity of a function f :

Definition 21.5. Let S ⊆ <n and T ⊆ <, let f : S → T . f is said to be
continuous at p ∈ S if ∀ ² > 0

∃δ > 0 : |x− p| < δ =⇒ d(f(x), f(p)) < ²

if f is continuous at every point in S then is said to be continuous on S.

Notice that if p is an accumulation point in S then we f is continuous if and
only if

lim
x→p

f(x) = f(p)

Remember also that if the function is defined on an isolated point is always
continuous at that point. As it was in<we have that the composite of a continuous
functions is continuous as you are asked to show in the following exercise:

Exercise 21.2. Let S ⊆ <n and T, U ⊆ < and let f : S → T and g : f(S)→ U.
Show that if f is continuous at p and g is continuous at f(p) then g◦f is continuous
at p.

Checking the continuity of a function in <n is not an easy task as it was in <.
The reason for that, as we already mentioned, is that in <n we can approach a
point along infinitely many directions and we have to make sure that whichever
direction we take the continuity property is preserved. As an example of that
consider the following function:

f(x, y) =
x2

y
y 6= 0

0 y = 0

If we check the continuity of f(x, y) at the origin and we restrict ourselves to the
directions given by y = mx ( m 6= 0) we have that limx→0 f(x,mx) = 0, but
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along the restriction y = x2 we have limx→0 f(x, x
2) = 1 and therefore f is not

continuous in the origin.
In class we will examine some methods including the use of polar coordinates

that can help us in this task.

Theorem 21.6. Let K ⊂ <m be a compact set and f : K → < be a continuous
function. Then f(K) is also compact

22. Multivariable differential calculus

22.1. Partial derivatives

The partial derivative of a function of n variables gives us information on the
behavior of the function when only one of the variables changes. More formally
if S ⊆ <n is an open set, x0 an element of S and f : S → < we define the partial
derivative of f at x0 with respect to the i

th variable (denoted by∂f(x0)
∂xi

or fxi(x0)
) the following limit (if it exists)

∂f(x0)

∂xi
= lim

h→0

f(x0 + hei)− f(x0)
h

where ei is the i
thcanonical basis. We then say that f is derivable at x0 if it has

partial derivatives with respect to each variable. Then if f is derivable we can
define its gradient that is the vector of its partial derivatives:

Df(x0) = [fx1(x0), ....fxn(x0)]

The calculation of partial derivatives does not give any problems since we can
apply the same rules of univariate calculus. In particular when we derive f with
respect to the ith variable we simply treat the other n− 1 variables as constant.
If consider a function f(x, y) : <2 → < we can give a geometrical interpretation

of the partial derivative. In particular the partial derivative with respect to x in
the point x0, y0 is the slope of the intersection of the surface z = f(x, y) with the
vertical plane y = y0.
Not surprisingly the derivability of a function does not imply continuity. Infact

the existence of partial derivative imply continuity along certain directions but we
have seen that this is not enough to guarantee the continuity of the function.
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Partial derivatives of higher order are simply defined as the partial derivatives
of the partial derivatives:

∂f(x0)

∂xj∂xi
= fxixj(x0) =

∂fxi(x0)

∂xj

and if f : S ⊆ <n → < has second order partial derivatives we can define its
Hessian Matrix as the square matrix of order n that has on the ith row and jth

column the partial derivative with respect to the jth variable of partial derivative
with respect to the ith variable, that is⎛⎜⎝ fx1x1 · · · fxnx1

...
...

fx1xn · · · fxnxn

⎞⎟⎠
We will also state (without proving) the following:

Theorem 22.1. (Schwarz’s) Let f : S ⊆ <n → < and x0 element of S. If fxixj
and fxjxi exist in a neighborhood of x0 and are continuous at x0 then we have:

fxixj(x0) = fxjxi(x0)

Exercise 22.1. Consider the function

f(x, y) =
x3y
x2+y2

(x, y) 6= (0, 0)
0 (x, y) = (0, 0)

Show that fxy 6= fyx. Why Schwarz’s theorem does not apply ?

22.2. Directional derivatives

Let f : S ⊆ <n → < and x0 interior point of S. Suppose we are interested in
evaluating how f changes when we move away from the point x0 toward the point
x0+d. Each point on the segment joining x0 and x0+d can be expressed as x0+ρd
(where ρ ∈ <) and therefore it make sense to define the directional derivative in
x0 along the direction d (denoted by the symbol f

0( x0, d) ) as:

f 0(x0, d) = lim
ρ→0

f(x0 + ρd)− f(x0)
ρ
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Remark 5. A direction is not univocously determined by a vector. In particular
all the vectors of the form hd = h(d1, ..., dn) with h ∈ < represent the same
direction. It’s therefore common to choose the vector d s.t. kdk = 1. This implies
that for functions f(x, y) : <2 → < all the possible directions can be described by
the vectors (cos θ, sin θ) with θ ∈ [0, 2π].

Remark 6. If d = ei then the directional derivative coincides with the partial
derivative with respect to the ith variable.

Remark 7. The existence of directional derivatives along any direction do not
imply continuity of the function (but this again should not be surprising) but
imply derivability. Derivability (that is existence of all partial derivatives) do not
imply the existence of directional derivatives as is shown by the following function

f(x, y) =
x+ y x = 0 or y = 0
3 otherwise

but later we will give conditions under which the directional derivative can be
expressed as a function of the partial derivative.

Exercise 22.2. Let f : S ⊆ <n → < be a linear function. Show that its direc-
tional derivative exists and does not depend on the point where it is calculated
but only on the direction vector d.

Exercise 22.3. Compute the directional derivative of the function f(x, y) = x+y
in the origin along a direction (an angle) θ.Which is the value of θ that gives the
higher value of the derivative ?

22.3. Differentiability

The existence of partial and directional derivatives were not enough to guarantee
continuity of a function. We will introduce the concept of differentiability.

Definition 22.2. Let f : S ⊆ <n → < and x0 interior point of S. f is said to
be differentiable at x0 if it exists a linear function T : <n → < such that we can
write

f(x0 + h) = f(x0) + Tx0(h) + o(khk)
As h→ 0 h ∈ <n
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Exercise 22.4. Show that if f is differentiable at x0 then it is continuous at x0.

Theorem 22.3. Let f : S ⊆ <n → < and x0 interior point of S. Let f be
differentiable at x0. Then it has directional derivatives f

0(x0, d) for every d ∈ <n
and we have

Tx0(d) = f
0
(x0, d)

The linear function Tx0() is called total derivative of f at x0, while the expression
Tx0(d) is also called differential of f. Proof. In the definition of differential take
h = md, m ∈ < and divide by m so:

f(x0 +md)− f(x0)
m

=
Tx0(md) + o(kmdk)

m
= Tx0(d) +

kdk o(m)
m

then let m go to 0 and the result follows.

Theorem 22.4. Let f : S ⊆ <n → < and x0 interior point of S. Let f be
differentiable at x0. Then the vector associated to the linear function Tx0(h) is the
gradient of f in x0. therefore we can write

f(x0 + h) = f(x0) +Df(x0)h+ o(khk)

Proof. Let’s first write h as h1e1 + ... + hnen, then using the linearity of T we
have

Tx0(h1e1 + ...+ hnen) =
X
i

hiTx0(ei) =X
i

hif
0(x0, ei) =

X
i

hifxi(x0) = Df(x0)h

This last theorem gives us a first order approximation of a multivariate function
using its partial derivatives. Notice also that a consequence of the theorem is that
if the function is differentiable the directional derivative along a certain direction
d can be easily computed as the scalar product of the gradient with the vector
representing the direction.

Remark 8. Continuity and derivability are necessary but not sufficient condi-
tions for differentiability as you are asked to show in the next exercise.
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Exercise 22.5. Show that the following function:

f(x, y) =
x2y
x2+y2

(x, y) 6= (0, 0)
0 (x, y) = (0, 0)

is continuous and derivable but not differentiable in the origin .Hint. to show that
is not differentiable use the expression

f(x0 + h) = f(x0) +Df(x0)h+ o(khk)

A sufficient condition for differentiability is stated in the following :

Theorem 22.5. If f has continuous partial derivatives in a neighborhood of x0
then it is differentiable in x0.

Remark 9. If we consider z = f(x, y) we can rewrite the expression of the dif-
ferential in x0, y0 as

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

and that can be interpreted as the equation of the plane tangent to the surface in
x0, y0.

22.4. Taylor’s formula

Before we introduce this formula we need to specify the higher order differentials.
If f :<n → < with partial derivatives of mth order in x and t ∈ <n we write:

f 00(x; t) =
nX
i=1

nX
j=1

Di,jf(x)titj

f 000(x; t) =
nX
k=1

nX
i=1

nX
j=1

Dk,i,jf(x)titjtk

and similar expressions for the mth order.
these formulae can be interpreted as higher order directional derivatives or as

differential of differentials.
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Theorem 22.6. Let f be a function differentiable m times on an open set S and
let a , b together with all the points on the line segment L(a, b) be elements of S.
Then there is a point z ∈ L(a, b) such that:

f(b) = f(a) +
m−1X
k=1

1

k!
f (k)(a, b− a) + 1

m!
f (m)(z, b− a)

Remark 10. An alternative way of writing Taylor formula is with the remainder
according to Peano that is

f(b) = f(a) +
mX
k=1

1

k!
f (k)(a, b− a) + o(kb− akm)

23. Vector valued functions

In this section we will generalize the concept of a function from <n to < to the
one of function from <n to <m.

Definition 23.1. Let S ⊆ <n and T ⊆ <m we define a function f : S → T
a mapping that associates a vector f(x) = (y1, ..ym) ∈ T ⊆ < to every vector
x = (x1, ....xn) ∈ S ⊆ <n.

A vector valued function from <n to <m can be thought as a set of m functions
from <n to < therefore sometimes we write f : <n → <m = (f1, ..f2) where
fi : <n → <, i = 1, ...m are called the components of f. An example of vector
valued function is given by the following

f : <2 → <2 = f1(x1, x2) = x1 + x2
f2(x1, x2) = x1x2

Definition 23.2. Let S ⊆ <n and T ⊆ <m, let f : S → T , let p be an accumula-
tion point of S ,and let b be point in <m. If ∀² > 0 ∃δ > 0 such that kx− pk < ²,
x ∈ S, x 6= p implies kf(x)− bk < δ then we write limx→p f(x) = b

Definition 23.3. Let S ⊆ <n and T ⊆ <m. A function f : S → T is continuous
at p ∈ S if ∀² >0

∃δ > 0 : kx− pk < δ =⇒ kf(x)− f(p)k < ²
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Continuity of a vector valued function can be established by establishing the
continuity of its components as shown in the next theorem:

Theorem 23.4. Let S ⊆ <n and T ⊆ <m, let f : S → T , let p be a point in
S . Then f is continuous in p if and only if all its components (f1, ...fm) are
continuous in p.Proof. If f is continuous at p then ∀² >0

∃δ > 0 : kx− pk < δ ⇒ kf(x)− f(p)k < ²⇒ |fi(x)− fi(p)| < ² ∀i

thus implying the continuity of each component. On the other hand if each com-
ponent is continuous then we have ∀²/m >0

∃δi > 0 : kx− pk < δi ⇒ |fi(x)− fi(p)| < ²/m, i = 1, .., n

Take then δ² = min(δ1, ...δm). We then have that ∀²/m

∃δ² > 0 : kx− pk < δ² ⇒ |fi(x)− fi(p)| < ²/m, i = 1, .., n

therefore ∀²
∃δ² > 0 : kx− pk < δ² ⇒

mX
i=1

|fi(x)− fi(p)| < ² (23.1)

but notice now that

mX
i=1

|fi(x)− fi(p)| ≥ kf(x)− f(p)k

(to see that just take the square of both sides) and therefore 23.1 implies that ∀²

∃δ² > 0 : kx− pk < δ² ⇒ kf(x)− f(p)k < ²

that is the continuity of f.

For vector valued functions the directional, partial derivatives and differentia-
bility are defined as we did for real valued functions. In particular let f : S ⊆
<n → <m and x0 interior point of S. We define the partial derivative of f with
respect to the ith variable

∂f(x0)

∂xi
= lim

h→0

f(x0 + hei)− f(x0)
h
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and the directional derivative off along a direction d

f 0(x0, d) = lim
ρ→0

f(x0 + ρd)− f(x0)
ρ

In particular if f = (f1, ...., fm) then f 0(x0, d) exists if and only if fi
0(x0, d)

exists for every i and we have that f 0(x0, d) = ( f10(x0, d), ..., fm
0(x0, d)) and

if d = ek then f
0(x0, ek) = fk(x0) = (f1k(x0), ..., fmk(x0)). In other words the

partial derivative of a vector valued function with respect to the kth variable is
the vector of partial derivatives of the components of f with respect to the same
variable. Analogously f is said to be differentiable at x0 if it exists a linear function
T : <n → <m such that we can write

f(x0 + h) = f(x0) + Tx0(h) + o(khk)
As h → 0 h ∈ <n o(khk) ∈ <m

or

f(x0 + h) = f(x0) + Tx0(h) + khkEx0(h)
where Ex0(h) → 0 as h→ 0

h ∈ <n Ex0(h) ∈ <m

For functions from <n to <1 we had that the linear function Tx0(x) = Df(x0)x
was associated to the gradient of the function computed in the point. For vector
valued functions the linear function T (x) is associated to a (m×n) matrix called
the Jacobian matrix. Before we derive the form of the Jacobian matrix we state
(The proof is analogous to that for functions from <n → < ) the following:

Theorem 23.5. Let f : S ⊆ <n → <m and x0 interior point of S. Let f be
differentiable at x0. Then it has directional derivatives f

0(x0, d) for every d ∈ <n
and we have

Tx0(d) = f
0
(x0, d)

and

Tx0(d) =
nX
i=1

dkDkf(x0)
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A consequence of the linearity of Tx0 is that

Tx0(d) = Tx0(d1e1 + ...+ dnen) = d1Tx0(e1) + ...+ dnTx0(en) =
nX
i=1

diTx0(ei)

but from the previous theorem

Tx0(ek) = Dkf(x0) =
mX
i=1

Dkfi(x0)ui

where ui are the canonical bases in <m

therefore we can write

Tx0(d) =
nX
i=1

di

mX
j=1

fji(x0)uj

or

Tx0(d) =

d1f11(x0) + ...+ dnf1n(x0)
...

d1fm1(x0) + ...+ dnfmn(x0)

so that the matrix associated with the linear function Tx0(d) , denoted by Jf(x0)
is

Jf(x0) =

f11(x0) · · · f1n(x0)
...

...
fm1(x0) · · · fmn(x0)

notice that the kth row of the Jacobian is simply the gradient of fk(x0) and that
in the special case of a function from <n to < the Jacobian consist in only one
row and is the gradient of the function.

23.1. The chain rule

We will see now how for vector valued function the Jacobian matrix of a composite
function can be found by multiplying the Jacobian matrices of two functions:

Theorem 23.6. Let f : <n → <m and g: <q → <n and let g be differentiable at a
with total derivative g0a() and b = g(a). Let also f be differentiable at b with total
derivative f 0b(). Then the composite function f ◦ g (a) = h(a) is differentiable at
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a and its total derivative is given by the composition of the linear functions g0a()
and f 0b() that is

h0a() = f ◦ g0a() = f
0
b
() ◦ g0

a
() = f 0

b
[g0
a
()]

Proof. We want to show that

h(a+ y)− h(a) = f 0
b
[g0
a
(y)] + kykE(y) (23.2)

where E(y)→ 0 as y → 0

Let b = g(a), and v = g(a+ y)− g(a). Then, since if differentiable,

h(a+ y)− h(a) = f(g(a+ y))− f(g(a)) = f(b+ v)− f(b) =
f 0
b
(v) + kvkEb(v) (23.3)

where Eb(v)→ 0 as v → 0

and since g is differentiable we have

v = g(a+ y)− g(a) = g0
a
(y) + kykEa(y) (23.4)

where Ea(y)→ 0 as y → 0

substituting 23.4 in 23.3 we get

h(a+ y)− h(a) = f 0
b
[g0
a
(y)] + kyk f 0

b
(Ea(y)) + kvkEb(v)

= f 0
b
[g0
a
(y)] + kykE(y)

where E(y) = f 0
b
(Ea(y)) +

kvk
kykEb(v)

so we need to show that E(y) = f 0
b
(Ea(y)) +

kvk
kykEb(v) goes to 0 as y goes to 0.

f 0
b
(Ea(y)) goes to 0 as y → 0 since Ea(y)→ 0 and f 0

b
() is linear. When y goes to

0 v goes to 0 as well so Eb(v) goes to 0 too. We therefore need to show that
kvk
kyk

doesn’t go to infinity as y goes to 0. Using the triangular inequality on 23.4 we
have

kvk ≤
°°°g0

a
(y)
°°°+ kyk kEa(y)k

but using first the triangular inequality and then the Cauchy Schwarz inequality
we have°°°g0

a
(y)
°°° = °°°°°

mX
i=1

[Dfi(a) · y]ei

°°°°° ≤
mX
i=1

k[Dfi(a) · y]eik =
mX
i=1

|Dfi(a) · y| ≤ kyk
mX
i=1

kDfi(a)k
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where
Pm

i=1 kDfi(a)k is bounded by a number M since f is differentiable. We
can therefore write

kvk ≤M kyk+ kyk kEa(y)k
and then

kvk
kyk ≤M + kEa(y)k

We can finally conclude that as y → 0 E(y)→ 0 thereby proving 23.2.

Remark 11. We have seen that the matrix associated to the total derivative is
the Jacobian matrix of the function in the point, that is

g0
a
(y) = Jg(a) · y

a consequence of that and that of the chain rule is that J(f ◦ g)(a) = Jf(b)Jg(a)
that is the Jacobian matrix of the composite of f and g is equal to the matrix
multiplication of the Jacobian matrices of f and g.

24. Applications of multivariate differential calculus

We will now see three important applications of multivariate differential calculus
namely the mean value theorem, the inverse function theorem and finally the
famous implicit function theorem.

Theorem 24.1. (Mean Value Theorem) Let S ⊆ <n be an open set and let
f : S → <m be differentiable in S. Let also x and y be two points in S such that
the entire segment joining them ( L(x, y) = {tx + (1− t)y : 0 ≤ t ≤ 1} ) is in S.
Then for every vector a ∈ <m there is a point z ∈ L(x, y) s.t.

x · (f(x)− f(y)) = a · f
z
(x− y) = a · Jf(z) · (x− y)

Remark 12. If f : S → < then we can pick a = 1 and the theorem states

f(x)− f(y) = Dfz(x− y) = Df(z) · (x− y)

Theorem 24.2. (Inverse function theorem) Let f : S → <n be a C1 (Continuous
with continuous partial derivatives) function with S open subset of <n and let T
be the image of S under f . If the determinant of the Jacobian matrix |Jf(a)|is
different from 0 for some point a ∈ S then there are two open sets X ⊆ S and Y
⊆ T and an unique function g. that satisfy:
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• a ∈ X and f(a) ∈ Y

• f is bijective from X to Y

• g is bijective from Y to X and satisfies g(f(x)) = x , ∀x ∈ X

• g is C1

• Jg(y) = J−1(f(g(y))

The inverse theorem gives us condition under which the following system of
(not necessarily linear) equations:

y1 = f1(x1, .., xn)
· · · · · ·
yn = fn(x1, .., xn)

can be (locally) solved for x1,.. xn in function of yn and also guarantees that locally
the solutions are unique, continuous and continuously differentiable. Suppose now
we have a more general system of equations

0 = f1(x1, .., xn, y1, ...yk)
· · · · · ·
0 = fn(x1, .., xn, y1, ...yk)

and we ask whether we can solve for x1, ...xn in function of y1, ...yk.The tool we
need is the implicit function theorem. In the following we will use the letters x
and y to denote vectors in <n and <k respectively and (x, y) will denote a vector
in <n+k.

Theorem 24.3. (Implicit function theorem or Dini’s theorem).Let f : S → <n,
where S is an open subset of <n+k, be a C1 function. Let (x0, y0) be a point for
which f(x0,y0) = 0 and for which det(Jxf(x0, y0) 6= 0 where

Jxf(x0, y0) =

Dx1f1(x0, y0) · · · Dxnf1(x0, y0)
...

...
Dx1fn(x0, y0) · · · Dxnfn(x0, y0)

then there exist an open set W ⊆ <k and an open set V ⊆ <n+k with y0 ∈ W
and (x0, y0) ∈ V and a unique function g:W → <n satisfying:
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• (g(y), y) ∈ V and f(g(y), y) = 0 ∀y ∈W

• g is C1

• Jg(y0) = −
£
Jxf(x0, y0)

¤−1
Jyf(x0, y0)

25. Homogeneous functions

In this section we will present some results on a particular class of functions
particularly useful in economics

Definition 25.1. A set A ⊆ <n is said a cone if x ∈ A→ ρx ∈ A with ρ ≥ 0.

Definition 25.2. A function f : A → < where A is a cone subset of <n is said
(positively) homogenous of degree a in A if ∀x ∈ A and ∀ ρ > 0

f(ρx) = ρaf(x)

Remark 13. Let f be a function homogeneous of degree a 6= 0. Then it must be

f(0) = 0

Theorem 25.3. Let f : A→ < where A is a cone subset of <n be a derivable and
homogeneous function of degree a. Then its partial derivatives are homogeneous
of degree a− 1.

Theorem 25.4. (Euler’s) Let f : A → < where A is a cone subset of <n be a
differentiable function on A. f is homogeneous of degree a on A if and only if we
have

xDf(x) = af(x)
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