The great moderation and the US external imbalance

Alessandra Fogli1 Fabrizio Perri2

1Minneapolis FED 2University of Minnesota and Minneapolis FED

SED Winter Meetings, 2008
Conditional Standard Deviation of GDP

Net Foreign Asset Position

Fraction of GDP
This paper

- Takes the US *great moderation* as given
This paper

- Takes the US *great moderation* as given
- Analyzes and measures how much of the US external imbalance it can explain
This paper

- Takes the US *great moderation* as given
- Analyzes and measures how much of the US external imbalance it can explain

Contributions
- Introduce a “new” fundamental in the debate on the US external adjustment
- Understand patterns of international capital flows in environments with time varying risk
What are the links?

- Consumption link

If great moderation is greater in US than abroad and international risk-sharing is incomplete, it causes a fall in relative precautionary savings motive. This increases scope for international inter-temporal trade and US imbalance.

Investment link: Changing relative risk between US and ROW should change international allocation of capital and affect net foreign asset positions.
What are the links?

Consumption link If *great moderation* greater in US than abroad *and* international risk-sharing incomplete: It causes a fall in *relative* precautionary savings motive → Increases scope for international inter-temporal trade → US imbalance
What are the links?

- **Consumption link** If *great moderation* greater in US than abroad *and* international risk-sharing incomplete:
 It causes a fall in *relative* precautionary savings motive → Increases scope for international inter-temporal trade → US imbalance

- **Investment link**
What are the links?

- **Consumption link** If *great moderation* greater in US than abroad *and* international risk-sharing incomplete: It causes a fall in *relative* precautionary savings motive → Increases scope for international inter-temporal trade → US imbalance

- **Investment link** Changing relative risk between US and Row should change international allocation of capital → affect net foreign asset positions
How big are these effects?

- Write the simplest open economy model which
How big are these effects?

- Write the simplest open economy model which
 - Has country specific risk and precautionary saving motive
 - Has explicit investment decisions
 - Captures second moments effects and (potentially) changes in steady states
Fact 1. In US decline in BC volatility large across all frequencies
Facts about Great Moderation in the G3

- Fact 1. In US decline in BC volatility large across all frequencies
- Fact 2. Decline in BC volatility in US larger than in Europe or Japan at most frequencies
The US great moderation across frequencies

Real GDP % deviations from Trend

Growth Rates

HP

LP60

LP80

GDP % deviations from Trend
Changes in BC volatility in the G3

US (LP 80)

Japan (LP 80)

Europe (LP 80)
Changes in BC volatility in the G3

<table>
<thead>
<tr>
<th>Filter</th>
<th>Country</th>
<th>60.1-83.4</th>
<th>84.1-05.4</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>US</td>
<td>1.08</td>
<td>0.51</td>
<td>-0.57</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>1.25</td>
<td>0.78</td>
<td>-0.47</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>0.77</td>
<td>0.42</td>
<td>-0.35</td>
</tr>
<tr>
<td>HP</td>
<td>US</td>
<td>1.90</td>
<td>0.96</td>
<td>-0.94</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>1.68</td>
<td>1.12</td>
<td>-0.56</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>1.08</td>
<td>0.73</td>
<td>-0.35</td>
</tr>
<tr>
<td>HP80</td>
<td>US</td>
<td>3.15</td>
<td>2.05</td>
<td>-1.10</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>3.13</td>
<td>2.35</td>
<td>-0.88</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>1.58</td>
<td>1.84</td>
<td>+0.26</td>
</tr>
</tbody>
</table>
Two countries, one good

Business cycles driven by country specific TFP shocks, with time varying volatility

Competitive factor markets and full risk sharing within a country (repr. agent)

Only asset traded internationally is a non-contingent bond, subject to constraints

Agents choose between consumption, investment in domestic capital and international bonds
The model, I

Preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{1 - \sigma} c_{it}^{1-\sigma} \]

Technologies:

\[y_{it} = A_{it} k_{it-1}^{\theta} l_{it}^{1-\theta} \]

\[k_{it} = (1 - \delta) k_{it-1} + x_{it} - \phi(k_{it-1}, x_{it}) \]
The model, II

Shocks

\[
\begin{bmatrix}
A_{1t} \\
A_{2t}
\end{bmatrix} = \begin{bmatrix}
\rho & \psi \\
\psi & \rho
\end{bmatrix} \begin{bmatrix}
A_{1t-1} \\
A_{2t-1}
\end{bmatrix} + \begin{bmatrix}
M(t)\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\varepsilon_1(s^t) \\
\varepsilon_2(s^t)
\end{bmatrix} \rightarrow N(0, \Sigma), \quad \Sigma = \begin{bmatrix}
\sigma_{\varepsilon}^2 & \eta\sigma_{\varepsilon}^2 \\
\eta\sigma_{\varepsilon}^2 & \sigma_{\varepsilon}^2
\end{bmatrix}
\]
Constraints:

\[c_{it} + x_{it} + \frac{b_{it}}{R_t} \leq y_{it} + b_{it-1} \]
\[b_{it} \geq -\bar{b}\bar{y} \]

Equilibrium:

\[c_{1t} + x_{1t} + c_{2t} + x_{2t} = y_{1t} + y_{2t} \]
\[b_{1t} + b_{2t} = 0 \]
The experiment

- Before 1984 world is in symmetric equilibrium in equal volatility of TFP shocks ($M(t) = 1 \forall t$)
- In 1984 agents in both countries learn that volatility in US TFP shocks has permanently fallen ($M(t) = 1 - \lambda < 1 \forall t$)
- Compute the expected path of variables before and after the change
- Analog to impulse response to a change in second moment
Key parameters

- Relative risk aversion: $\sigma = 5$
- Persistence of TFP shocks: $\rho = 0.98$
- Relative reduction in volatility of US shocks innovation: set it so that, given persistence, model matches the fall in HP80 standard deviation ratio between US and G3: $\lambda = 30\%$
- Borrowing constraint: 100% of GDP
Imbalances and consumption dynamics

- Risk faced by US consumers fall
- US precautionary motive falls, equivalent to an increase in US discounting
- US increases preference for consumption today relative to consumption tomorrow, increases US borrowing
- Increase scope for international inter-temporal trade results in increase in interest rate and steady state imbalance.
Expected Responses (High adj. costs)

Consumption

- US
- Rest of the World

Real Interest Rate

Current Account

Net Foreign Asset Position
From FONC for investment and bonds we get,

\[R = \frac{\text{cov}(F'_k u'_c)}{\mathbb{E}(u'_c)} + \mathbb{E}F'_k = \frac{\text{cov}(F'_k u'_c)}{\mathbb{E}(u'_c)} + \mathbb{E}F'_k \]

\[\mathbb{E}F'_{ki} = \text{Exp. return to capital net of adj. costs}, \]

\[0 > \frac{\text{cov}(F'_k u'_c)}{\mathbb{E}(u'_c)} = \text{Risk premium term}. \]
\begin{align*}
\mathbb{E} F'_{k1} - \mathbb{E} F'_{k2} &= \frac{\text{cov}(F'_{k2}u'_{c2})}{\mathbb{E}(u'_{c2})} - \frac{\text{cov}(F'_{k1}u'_{c1})}{\mathbb{E}(u'_{c1})} \\
\end{align*}

- conditional on any state, if US volatility falls, \(\text{cov}(F'_{k1}u'_{c1}) \) falls in abs. value, \(\mathbb{E} F'_{k1} - \mathbb{E} F'_{k2} \) falls too
- Increased capital/investment in US relative to RoW
Conditional Investment dynamics

Investment

Capital stock

% Deviation from SE

1980 2000 2020 2040

1980 2000 2020 2040

US

Rest of the World

% Deviation from SE

1980 2000 2020 2040

1980 2000 2020 2040

-0.6
-0.4
-0.2
0
0.2

-0.4
-0.3
-0.2
-0.1
0
0.1

©
Unconditional Investment dynamics

Investment

- US
- Rest of the World

Capital stock

- US

% Deviation from SE

- 1980 2000 2020 2040
- -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

$\%$ Deviation from SE

- 1980 2000 2020 2040
- -0.2 -0.1 0 0.1 0.2

Legend:
- **US**
- **Rest of the World**
Why does the US invest less?

- Moderation changes (the distribution of) TFP states
- Investment function convex in TFP (Oi 61)
- On average after moderation US invests less
Investment and TFP (post-moderation)

![Graph showing Investment vs. TFP for different regions (US, RoW), post-moderation.](image-url)
Investment flows significantly affect the response of imbalance to GM
Overall assessment

- We do not wish to explain *total* US imbalances but rather assess the importance of our channel.
- In 2006 US global imbalances 24% of GDP, imbalances vis-a-vis Europe and Japan 12%.
- Under benchmark parameters, fall in volatility can generate an imbalance in 2006 of around 7.5%.
<table>
<thead>
<tr>
<th>Sensitivity of US imbalances (% of GDP) to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Aversion, σ</td>
</tr>
<tr>
<td>$\sigma = 2$</td>
</tr>
<tr>
<td>Imb.</td>
</tr>
<tr>
<td>Borrowing Constraint (% of GDP) \bar{b}</td>
</tr>
<tr>
<td>$\bar{b} = 0$</td>
</tr>
<tr>
<td>Imb.</td>
</tr>
<tr>
<td>Persistence of shocks, ρ</td>
</tr>
<tr>
<td>$\rho = 0.96$</td>
</tr>
<tr>
<td>Imb.</td>
</tr>
<tr>
<td>Relative fall in US volatility, λ</td>
</tr>
<tr>
<td>$\lambda = 1/4$</td>
</tr>
<tr>
<td>Imb.</td>
</tr>
</tbody>
</table>
What happens with more intl diversification?

- Consider CM model: consumption equalized, investment response similar as in IM
- Different measure of NFA (forward v/s backward looking)

\[w(s^t) = c(s^t) + x(s^t) - y(s^t) + \sum_{s^{t+1}} w(s^{t+1}) q(s^{t+1}, s^t) \]

\[w(s^t) = x(s^t) - x^*(s^t) + y^*(s^t) - y(s^t) + \sum_{s^{t+1}} w(s^{t+1}) q(s^{t+1}, s^t) \]
Imbalances in complete and incomplete markets

<table>
<thead>
<tr>
<th>Time</th>
<th>Complete Markets</th>
<th>Incomplete Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>-0.16</td>
<td>-0.14</td>
</tr>
<tr>
<td>1990</td>
<td>-0.14</td>
<td>-0.12</td>
</tr>
<tr>
<td>2000</td>
<td>-0.12</td>
<td>-0.10</td>
</tr>
<tr>
<td>2010</td>
<td>-0.10</td>
<td>-0.08</td>
</tr>
<tr>
<td>2020</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>2030</td>
<td>-0.06</td>
<td>-0.04</td>
</tr>
<tr>
<td>2040</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

NFA (percent of GDP)
Imbalances in complete and incomplete markets

- In IM investment dynamics is unanticipated. RoW investing more leads to more RoW borrowing. Lowers overall US imbalance.
- In CM investment dynamics is anticipated. RoW investing more leads to high RoW relative wealth. Only source of US imbalance.
Why is US accumulating more and more external debt?
We investigate a simple reason, i.e. US aggregate risk has decreased more than in other countries.
Does not explain the whole imbalance but a non-trivial fraction, finding fairly robust
Important to keep in mind when doing external adjustment analysis
Help us understand the link between volatility, consumption and investment dynamics and imbalances