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ABSTRACT

We explore the welfare consequences of different taxation schemes in an economy where agents
are debt-constrained. If agents renege their debts, they are banned from future credit markets,
but retain their private (labor) endowments which are subject to income taxation. We impose
individual rationality constraints on agents guaranteeing no exclusion in equilibrium and
solve for the equilibrium consumption distribution across agents. A change in the tax system
changes the severity of punishment from exclusion. We demonstrate that a change to a more
redistributive tax system leads to a restriction of the set of contracts that are individually
rational and that this restriction leads to a limitation of possible risk sharing via private
contracts. The welfare consequences of a change in the tax system depend on the relative
magnitudes of increased risk sharing enforced by the new tax system and the reduced risk
sharing in private insurance markets. We quantitatively address this issue by calibrating an
artificial economy to US income and tax data. We show that for a plausible selection of the
structural parameters of our model, the change to a more redistributive tax system leads to
less risk sharing among individuals and, hence, lower ex-ante welfare.
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1. Introduction

Are redistributive income taxes desirable as a risk sharing device against idiosyncratic income
uncertainty? The insights that economic theory provides for this question depend on the assumptions
about the structure of private insurance markets. If these markets are complete, in that agents can
trade a complete set of perfectly enforceable insurance contracts, then complete risk sharing is
achieved via private markets and redistributive income taxes provide no additional insurance. If, on
the other hand, private insurance markets are nonexistent or incomplete, redistributive taxes might
provide additional insurance. As Mirrlees (1974), Varian (1980), among others, point out, this
beneficial effect of redistributive taxes has to be traded off against the adverse effect on incentives
to supply labor and to accumulate capital, leading to a nontrivial optimal taxation problem.?

Recent empirical studies (see Hayashi et al. (1996), Attanasio and Davis (1996)) have seri-
ously challenged the complete markets assumption, mostly on the ground that risk sharing among
individuals is not perfect. As Hayashi et al. conclude: “Our result that there is no full insurance
even among related households should serve as a final blow to the complete markets paradigm.”

Starting from the empirical observation of incomplete risk sharing, a large body of litera-
ture has introduced some form of market incompleteness into the economic environment. Some
authors (see Huggett (1993), Aiyagari (1994), among others) assume that some insurance markets
are nonexistent for exogenous reasons (usually it is assumed that agents can only self-insure via a
single uncontingent bond and face borrowing constraints). The optimal tax analyses by Mirrlees
(1974) and Varian (1980) fall into this category.

This modeling strategy does not explicitly capture what we believe is a crucial aspect of

redistributive taxation as a risk sharing device: a change in the progressivity of the tax system

2A second common justification for redistributive taxation is the social desire to attain a more equal income or
wealth distribution. Although we believe that this justification is potentially important we will not address this point
in this paper. See Mirrlees (1971) for an analysis of the trade-off between the equity and the labor supply incentive
effect of redistributive taxation.



might affect the incentives and opportunities private agents have to engage in private risk-sharing
arrangements and thus the form and extent of market incompleteness. To repeat Dixit’s (1989)
quote of Stiglitz (1981): “Without a clear specification of the information/transactions technology,
there is always a danger that any intervention in the economy designed, say, to alleviate problems
arising from an absence of risk markets will be either infeasible or so costly to implement that it
would not, in fact, constitute a Pareto improvement, for precisely the same reasons that the markets
were absent in the first place.”

We therefore explore an alternative approach that models the source of incomplete risk
sharing eaplicitly.> Our approach relies on the assumption of limited enforceability of private con-
tracts.* We follow the approach of Kehoe and Levine (1993, 2001) and assume that a complete set
of private insurance contracts can be traded. These contracts, however, can not be legally enforced.
The only enforcement mechanism for existing contracts is the threat of exclusion from future credit
and insurance markets upon default on existing contracts. Tax liabilities, however, are not subject
to this enforcement problem as we assume that the penalty for defaulting on tax payments can
be made prohibitively large by the government. If agents default on their private debt, they are
banned from future credit and insurance markets, but retain their private (labor) endowment which
is still subject to income taxation. We impose individual rationality constraints on agents guaran-
teeing no exclusion in equilibrium. A change in the tax system changes the severity of punishment
from default by altering the utility an agent can attain without access to insurance markets. We
demonstrate that a change to a more redistributive tax system leads to a restriction of the set of
contracts that are individually rational. In an economy that is characterized by uncertainty with

respect to individual endowments, this restriction leads to a limitation of possible risk sharing via

3Dixit (1989) demonstrates the importance of modeling the source of incomplete risk sharing explicitly for the
example of trade policy.

! Another fraction of the literature derives market incompleteness from informational frictions underlying the phe-
nomena of adverse selection and moral hazard (see Cole and Kocherlakota (1998) and their review of the literature).



private contracts. The welfare consequences of a change in the tax system then depend on the
relative magnitudes of increased risk sharing enforced by the new tax system and the reduced risk
sharing in private insurance markets.

We quantitatively address this issue by designing an artificial economy calibrated to US
income and tax data. We first measure a stochastic pre-tax income process and a tax system using
Consumer Expenditure Survey (CEX) data. We then compare steady state consumption allocations
arising under different tax systems.

We find that, for a reasonable selection of the structural parameters of our model, making
taxes more progressive leads to less risk sharing among individuals, lower ex-ante welfare and higher
consumption inequality. We also show that the opposite happens in an economy in which risk sharing
is limited for reasons exogenous to the model. These results, that we view as our main economic
contribution, demonstrate that, when analyzing a redistributive tax policy reform, it is crucial to
take Stiglitz (1981) seriously and model the underlying source of limited risk sharing explicitly.
We want to stress that our result is derived in a model in which the previously mentioned adverse
welfare effects of redistributive taxes due to reduced incentives to work and to accumulate capital
is completely absent.

On the theoretical side, others have studied economies with debt constraints (see Kocher-
lakota (1996) and Alvarez and Jermann (2000) among others). These authors, however, consider
economies with only two (types of) agents in which household heterogeneity is limited. In a re-
lated but independent paper Attanasio and Rios-Rull (2000) use such a model to study the effect of
mandatory public insurance programs against aggregate uncertainty on private insurance arrange-
ments against idiosyncratic uncertainty. Although their economy is populated by a large number of
(potentially heterogeneous) agents, by assumption agents can only enter pairwise insurance arrange-

ments, not involving any other member of the population. So their underlying insurance problem



is equivalent to the ones studied by Kocherlakota and Alvarez and Jermann. Similar to our result
they show that the extent to which idiosyncratic shocks can be insured away depends negatively on
the public provision of insurance against aggregate uncertainty. Ligon, Thomas and Worrall (2000a,
2000b) set up a model with a finite, but potentially large number of agents that can engage in mu-
tual insurance schemes. Once they solve for constrained-efficient insurance contracts numerically,
however, they need to restrict attention to economies with either two agents (as in Ligon, Thomas
and Worrall (2000b), which also includes capital accumulation), or they need to assume that agents
engage in contracts with the rest of the population, treating the rest of the population as one agent
(as in Ligon, Thomas and Worrall (2000a)). This again reduces the problem to a bilateral insurance
problem as in the other papers discussed previously.’

The main methodological contribution of this work is the analysis of a debt constrained
economy with a continuum of agents facing idiosyncratic uncertainty: this allows us to analyze
insurance mechanisms involving the entire population and not only pairwise relationships. We
view this as crucial in our quantitative analysis of risk sharing arrangements such as progressive
taxation since gains from insurance are particularly sizable among a large pool of agents with
mostly idiosyncratic (i.e. largely uncorrelated) income uncertainty (such as the US labor force).
In addition our model, in contrast to the previous literature, endogenously delivers a rich cross-
sectional consumption distribution and thus may be of independent interest for the study of other
policy reforms where distributional issues are important. But it is also exactly the rich cross-sectional
dimension of the model that leads to considerable theoretical and computational complications in
solving it. To this end adapt the work of Atkeson and Lucas (1992, 1995) who study efficient

allocations in an economy with a continuum of agents and private information. We then show,

®The authors have to do so in order to avoid the curse of dimensionality. In their set-up of the problem the
cumulative Lagrange multipliers on the enforcement constraints for each agents become (continuous) state variables,
in practice ruling out computing allocations for economies with more than two agents.



following Kehoe and Levine (1993), how to decentralize efficient allocations as equilibrium allocations
in a standard Arrow Debreu equilibrium with individual rationality constraints.

The paper is organized as follows. In Section 2 we lay out the model environment and define
equilibrium. In Section 3 we define and characterize efficient allocations. Section 4 discusses the
decentralization. Section 5 presents qualitative features of the equilibrium. Section 6 discusses our
policy experiments and Section 7 the parameterization we employ for these experiments. In Section
8 we present our quantitative results, in Section 9 we investigate the sensitivity of our results to
parameter changes and in Section 10 we compare our results with those obtained for a standard
incomplete markets economy. Section 11 concludes; tables, figures and proofs are contained in the

appendix.

2. The Economy
There is a continuum of consumers of measure 1, who have preferences over consumption

streams given by

(1) U({a}Zo) = (1 - HB)Ey liﬁtU(Ct)
t=0

The period utility function u : R4 — D C R is assumed to be strictly increasing, strictly concave,
twice differentiable and satisfies the Inada conditions. Its inverse is denoted by C': D — R.. Hence
C(u) is the amount of the consumption good necessary to yield period utility u. Let D = sup(D);
note that we do not assume u to be bounded so that D = oo is possible.

An individual has stochastic endowment process e € E, a finite set with cardinality N,
that follows a Markov process with transition probabilities w(e’|e). For each consumer the transition
probabilities are assumed to be the same. We assume a law of large numbers,% so that the fraction of

agents facing shock €’ tomorrow with shock e today in the population is equal to 7(e’|e). We assume

®Note that we do not require independence of endowment processes across individuals; the assumption of a law of
large numbers can then be justified with Feldman and Gilles (1985), proposition 2.



that 7(€’|e) has unique invariant measure I1(.). We denote by e; the current period endowment and by
e! = (eq, .., ;) the history of realizations of endowment shocks; also m(ef|eg) = m(et|er—1) - - - w(e1]ep).
We use the notation e®|e! to mean that e® is a possible continuation of endowment shock history e’.
We also assume that at date 0 (and hence at every date), the cross-sectional measure over current
endowment is given by II(.), so that the aggregate endowment is constant over time. At date 0
agents are distinguished by their initial asset holdings, ag (claims to period zero consumption) and
by their initial shock eg. Let ©g be the joint measure of initial assets and shocks.

The government uses taxes to finance a constant amount of public spending g in every period
that yields no utility to consumers. The government specifies a tax policy 7(e;) that is constant
over time. We take government policies g,7(.) as exogenously given. For an individual we let
yr = e;(1 — 7(e;)) be the after-tax income. Since the function 7(.) does not depend on time, for a
given tax function 7(.) there is a one-to-one mapping between pre-tax and after-tax endowments.
From now on we let y € Y C R, denote an individual’s generic after-tax endowment, following the

Markov process 7 with invariant distribution IT and denote by y* = (yo, . ..¥:) a history of after-tax

endowment shocks. We restrict the government policies g, 7(.) to satisfy

(2) g¢g= /etT(et)dH.

With this assumption resource feasibility for this economy states that the sum of all agents’ con-
sumption has to be less or equal than the sum over all individuals’ after-tax endowment. Therefore,
once g,7(.) are fixed and hence the after-tax endowment process is specified, we can carry out the
subsequent analysis without explicit consideration of the government.

Consumers can trade a full set of state-contingent commodities. A consumption allocation
¢ = {ci(ag,y")} specifies how much an agent of type (ag,yo) consumes who experienced a history
of endowment shocks y!. Individuals, at any point in time, have the option to renege on existing

contracts. The only punishment for doing so, and hence the only enforcement mechanism for



contracts, is that agents that default on their contracts are banned from future insurance markets.
They are, however, allowed to self-insure by saving (but not borrowing) at an exogenous constant
interest rate r.” The expected continuation utility for an agent who defaults after history y is given

by UA(ys;1) = U(0,y;), where U is the solution to the functional equation

@) Ulay)= _ max  (1=BFuly+(1+ra- a') + Bgﬂ(y’ly)U(a’,y’)

with ag = 0 given. It is obvious that UA" (ye;7) is strictly increasing in y, as long as the income
shocks are uncorrelated or positively correlated over time.

Individuals have no incentive to default on a consumption allocation ¢, at any point in time
and any contingency, if and only if an allocation satisfies following continuing participation or debt

constraints

(4)  Udao,y',e) = (1=B) {u(clao,y')) + 2 3 8wy ly hu(clao,y)) | = UM (yisr) vyt

s>t ys ‘y

i.e. if the continuation utility from c is at least as big as the continuation utility from defaulting on
¢, for all histories 3°. Since there is no private information and markets are complete, exclusion will
not happen in equilibrium as nobody would offer a contract to an individual for a contingency at
which this individual would later default with certainty.

Notice that our specification of the debt constraint is more general than the one introduced
by Kehoe and Levine (1993) in which agents who default are not allowed to save. If r = —1, our

model is equivalent to theirs and the right hand side of the debt constraint reduces to

(5) UM (ys—1)=(1—=5) [uly) + DD B w(y Iy ulys)

s>t y3|yt

From now on, whenever there is no danger of ambiguity, we omit the dependence of U; Aut o

"This assumption is motivated by current US bankruptcy laws. Agents filing for bankruptcy under Chapter 7
must surrender all their assets above certain exemption levels; the receipts from selling these assets are used to repay
the consumer’s debt. Remaining debt is discharged. In most cases of Chapter 7 bankruptcy debtors have no non-
exempt assets (see White (1998)), so the consequences of filing for bankruptcy only entail restrictions on future credit.
Individuals that declared personal bankruptcy are usually denied credit for seven years from major banks and credit
card agencies. We view our assumption of being banned forever as a first (and easily tractable) approximation, keeping
in mind that it may overstate the punishment from default.



A. Equilibrium

We now define a competitive equilibrium for the economy described above. We will follow
the approach of Kehoe and Levine (1993). Consider an agent with period zero endowment of yg
and initial wealth of ag. Wealth is measured as entitlement to the period 0 consumption good. Let
O¢ be the joint distribution over (ag,yo) and denote by p;(y?) the date zero price® of a contract
that specifies delivery of one unit of the consumption good at period t to/from a person who has
experienced endowment shock history y!. For each contingency ct(ag,y') — y: is the net trade of
individual (ag, o) for that contingency. In period 0 there is no uncertainty, so normalize the price
of the consumption good at period 0 to 1.

A household of type (ag,yo) chooses an allocation {¢;(ag,y")} to solve

(6) max Up(ao, Yo, ¢)
(7) st colao,yo) + Z Z pe(y)ei(ao,y') < ag+yo+ Z Z pe(y")ye

t=1 yt|yo t=1yt|yo
(8) Ut (a07 yta C) > UAUt (yt)

Note that, as in Kehoe and Levine (1993), the continuing participation constraints enter the indi-

vidual consumption sets directly.

DEFINITION 1. An equilibrium consists of prices {pi(y")},o, and allocations {ci(ao,y")}re, such

that

e given prices, the allocation solves household’s problem for almost all (ap,yo)

8Note that in standard Arrow Debreu equilibrium theory with finitely many consumers, a complete description of
the state of the economy would be everybody’s endowment shock history, and all prices would be contingent on this
complete state. With atomistic individuals, the assumed law of large number and no aggregate uncertainty, attention
can be restricted to equilibria in which prices (and quantities) depend only on own personal histories.



e markets clear, i.e. for all t,

O [ S elan. ) 1m0)d00 = [ 3wy’ lv0)dOs.

As is clear from the equilibrium definition our economy does not include physical capital
accumulation or government debt, so assets are in zero net supply and the aggregate asset to
income ratio is identically equal to zero. While this may seem unrealistic, we deliberately chose to
abstract from both types of assets. In a closed economy with incomplete markets and precautionary
savings motives an increase in income uncertainty leads to higher precautionary saving, hence higher
investment, a higher steady state capital stock and thus higher steady state production (see Aiyagari
(1994)). In our economy relaxed borrowing constraints drive the interest rate up and thus, in a
version of the model with capital, the aggregate capital stock down. Since in this paper we want to
focus on the risk sharing properties of different taxation schemes rather than the effects of taxation
and income uncertainty on capital accumulation, we compromise on realism to more clearly isolate
the potential quantitative importance of the crowding-out mechanism introduced in this paper.

With respect to government debt, the government budget constraint would mandate that, for
the same amount of outstanding government debt, the amount of taxes levied to finance the interest
payments on the debt would vary across steady states, due to changes in the interest rate. Since
the comparison of private households’ welfare across economies with different tax burdens seems

problematic, we also abstract from government debt in this paper.

3. Efficient Allocations

The next step in our analysis is to characterize and compute equilibrium allocations. Unfor-
tunately this is hard to do by tackling the equilibrium directly. In particular, the presence of the
infinite number of dynamic constraints (8) restricting the choice of state contingent claims does not

allow to solve the household’s problem as a standard dynamic programming problem. Therefore in



this section we will follow Atkeson and Lucas (1992, 1995) to first characterize efficient allocations
and then argue in the next section that they can be decentralized as competitive equilibrium allo-
cations. As shown by Atkeson and Lucas solving for efficient allocations does reduce to solving a
standard dynamic programming problem which makes their approach so useful for our problem. As
they, however, we also have to restrict our analysis to stationary allocations, i.e. to allocations for
which the cross-sectional consumption and wealth distribution is constant over time.

The key insight of Atkeson and Lucas is to analyze the problem of finding efficient allocations
in terms of state contingent wutility promises rather than state contingent consumption. Instead
of being indexed by initial assets and endowment shock, now individuals are indexed by initial
entitlements to expected discounted utility at period 0, wg and initial endowment shocks, yo. We
will discuss the connection between initial asset positions and initial utility promises in Section 4.
Let ®¢ be the period 0 joint measure over (wg,yo). An allocation is then a sequence {h¢(wo,y")}5%,
that maps initial entitlements wy and sequences of shocks 3¢ into levels of current utility in period t.
Here h¢(wp,y?) is the current period utility that an agent of type (wg,yo) receives if she experienced
a history of endowment shocks y'. Note that c;(ag,y’) = C(ht(wp,y")) for an agent whose utility
entitlement wq corresponds to initial asset holdings ag, where C' is the inverse of the period utility

function as defined in Section 2. For any allocation h = {h;(wo,y")}{°, define

(10)  Up(wo,y', h) = (1 = B) | he(wo,y") + i > BTy ) he(wo, y°)

s>tyslyt

Equation (10) defines the continuation utility from an allocation h of agent of type (wo,y0) from

date ¢ and shock history 3' onwards.

DEFINITION 2. An allocation {hi(wo,y")}52 is constrained feasible with respect to a joint distribu-

tion over utility entitlements and initial endowments, @, if for almost all (wg,yo) €supp(Po)

(11) wy = Uo(w07y07h)

10



(12) Up(wo,y' k) > UM (y) vy
(13) Jim 3 sup Uy(wo, ', h) =0
Y

19 % [ (Clhuwo.y) - ye) ' l)a®e < 0. v

An allocation {hi(wq,y")}° is efficient with respect to ®q if it is constrained feasible with respect
to g and there does not exist another allocation {hs(wo,y?)}e2, that is constrained-feasible with

respect to ®¢ and such that

(15) Z/C(ﬁt(wo,yt))ﬂ(ytlyo)d@o < Z/C(ht(wo,yt))ﬂ(yt|yo)d<l>0 for some t

We call equation (11) the promise keeping constraint: the allocation delivers utility wq to
agents entitled to wg. Equations (12) are the continuing participation constraints.” Equation (13)
is a boundedness condition that assures that continuation utility goes to zero in the time limit.
Equation (14) is the resource feasibility condition, requiring aggregate consumption in every period
to be less or equal than aggregate endowment in that period. The definition basically says that a
utility allocation is efficient if it attains the utility promises made by ®¢ in an individually rational
and resource feasible way and there is no other allocation that does so with less resources. In order
to use recursive techniques, however, we have to restrict ourselves to stationary allocations. Define
®,; to be the joint measure over endowment shocks y; and continuation utilities Uy (wo, y%, h) for a
given allocation. An allocation is stationary if ®; = &g = . In the next subsections we will show

that such an allocation exists, characterize it and demonstrate how to compute it.

A. Recursive Formulation
In order to solve for stationary efficient allocations we consider the problem of a planner

that is responsible of allocating resources to a given individual and who can trade resources at a

9Note that a ®¢ that puts positive mass on (wo,yo) and satisfies wy < UA“t(yo) does not permit a constraint
feasible allocation as promise keeping and debt constraints are mutually exclusive. We restrict attention to ®¢ with
the property that only initial utility entitlements at least as big as the utilty from autarky have positive mass.

11



fixed intertemporal price }—1% In this subsection we discuss such a planners’ recursive problem and
in the next subsection its solution. We then show that the planners’ policy functions induce a
Markov process over utility promises and income shocks which has a unique invariant distribution,
and finally we demonstrate that there exists an R* at which the resources needed to deliver utility
promises dictated by the stationary distribution equal the aggregate endowment in the economy.
For constant R € (1, %], consider the following functional equation (F'E) problem. Individual
state variables are the promise to expected discounted utility that an agent enters the period with,
w, and the current income shock y. The planner chooses how much current period utility to give to
the individual, h, and how much to promise her for the future, g,/, conditional on her next periods
endowment realization y’. We now make the following assumptions on the individual endowment

processlo

Assumption 1: n(y'|y) = 7(y’) for every y',y €Y

Assumption 2: 7w(y) >0, forally €Y

The operator Ty defining the functional equation of the planner’s problem is:

19 TV = omin (1- %) ct)+5 X #6V(ey)

(17) sstw = (1-p)h+0 Z (Y ) gy

y'eYy
(18) gy > UAut(y/) Vy'EY

where V(w) is the resource cost for the planner to provide an individual with expected utility w
when the intertemporal shadow price of resources for the planner is %. The cost consists of the cost

)C(h), and expected cost from tomorrow on, 3-, 7(y")V (gy), dis-

for utility delivered today, (1 — %

0For the quantitative analysis we will relax these assumptions; however, we could not prove some of our theoretical
results without these assumptions.

12



counted to today. Atkeson and Lucas (1992, 1995) show that a stationary allocation {h(wo,y?)}52,
is efficient if it is induced by an optimal policy from the functional equation above with R > 1 and
satisfies the resource constraint with equality.'!

Equation (17) is the promise-keeping constraint: an individual that is entitled to w in fact
receives utility w through the allocation rules {A(.), gy (.)}ycy. The continuing participation con-
straints in equation (18) state that the social planner for each state tomorrow has to guarantee
individuals an expected utility promise at least as high as obtained with the autarkic allocation.

The utility in autarky is given as the solution to the functional equation in (3).

B. Existence and Characterization of Policy Functions for Fixed R

We first prove the existence of optimal allocation rules in the problem with the additional
constraints g, < w in (18), where @ is an upper bound on future utility promises. We then
characterize the solution of this problem and show that the additional constraints are not binding
so that the solution to the problem with additional constraints is also solution to the original
problem.'? The modified Bellman equation is defined on C(W), that is, the space of continuous
and bounded functions on W, where W = {w € R|lw < w < w} C D is a compact subset of  and
w = min, U A“t(y). This gives us a standard bounded dynamic programming problem. From now
on we will denote by Tr the operator defined above, but including the additional constraints.

Note that with the additional constraints on future utility promises, (17) and (18) imply that

for every w in W possible choices h for current utility satisfy

w — Bw

w =YWV _
(1-0) '

=TT

(19)  h(w) := (w)

'L A policy (h, {g,'}) induces an allocation, for all (wo,yo), in the following way: ho(wo,yo) = h(wo, ¥o), w1(wo,y') =
gy, (wo,yo) and recursively wq(wo, ¥ = gy (wi—1(wo, yt_l), yt) and h¢(wo, yt) = h(wi(wo,y"), yt). Adaptations
of their proofs to our environment are contained in Section 1.1 of a separate theoretical appendix, available at
http://www.stanford.edu/~ dkrueger/theoreticalapp.pdf.

'2Note that if we had assumed that « and hence C' are bounded functions this complication is avoided as the upper
bound on u serves as upper bound @. The results to follow do not require boundedness of wu.

13



Accordingly define h := h(w) and h := h(w). We will show below that we can choose w =
max, U Aut(y) + ¢, for ¢ > 0 arbitrarily small, without the constraints gy (w) < @ binding at
the optimal solution, for all w € W. In order to assure that the constraint set of our dynamic

programming problem is compact, for all w € W we need (since D need not be compact)
Assumption 3: [h,h] C D.

Assumption 3 is an assumption purely on the fundamentals (u,7,Y,r) of the economy and

hence straightforward to check. In particular, for » = —1 (the case studied by Kehoe and Levine

(1993)) we have h(0) = w(ymax) € D and h(w) = w(Ymin) — Bt(Ymax) — Eu(y)] € D as long as g’;?;‘
is sufficiently small and/or 3 is sufficiently small.'®

Using standard theory of dynamic programming with bounded returns it is easy to show that
the operator T has a unique fixed point Vi € C(W) and that for all vg € C(W), ||Thvo — Vg|| <
%HUO — Vg||, with the norm being the sup-norm. Also Vj is strictly increasing, strictly convex
and continuously differentiable and the optimal policies h(w), g,/(w) are continuous, single-valued
14

functions.

We will now use the first order conditions to characterize optimal policies.

1-5
C'(h) < ——V'(gy
W= gr—q" )
(20) = V) i g > UMY
BR-1)" !
w = 1=Ph+8Y 7 )gy
y'eYy
The envelope condition is:
R-1)
21) V'(w) = (70' h
Q) V()= =5 »)
3For CRRA utility with coefficient of relative risk aversion ¢ > 1 and r = —1 assumption 3 is always satisfied.

Y The proofs of these results are again adaptations of proofs by Atkeson and Lucas (1995). They are contained in
Section 1.2. of the separate theoretical appendix at http://www.stanford.edu/~dkrueger/theoreticalapp.pdf.
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First we characterize the behavior of h and g,» with respect to w. The planner reacts to a higher
utility promise w today by increasing current and expected future utility, i.e. by smoothing the cost
over time and across states. The continuing participation constraints, though, prevent complete cost
smoothing across different states: some agents have to be promised more than otherwise optimal in
certain states to be prevented from defaulting in that state. This is exactly the reason why complete

risk sharing may not be constrained feasible.

LEMMA 1. Let assumptions 1-3 be satisfied. The optimal policy h, associated with the minimization
problem in (16) is strictly increasing in w. The optimal policies g, are constant in w and equal to

UA(y) or strictly increasing in w, for all i’ € Y. Furthermore

gy(w) > U(y) and gy (w) > U™ (g) imply g, (w) = gy (w)

gy(w) > UA(y) and gy (w) = U™ (¥) imply g, (w) < gy (w) and ' < ¢’

Proof. See Appendix

The last part of the lemma states that future promises are equalized across states whenever
the continuing participation constraints permit it. Promises are increased in those states in which
the constraints bind.

Now we state a result that is central for the existence of an upper bound w of utility promises.
For promises that are sufficiently high it is optimal to deliver most of it in terms of current period
utility, and promise less for the future than the current promises. This puts an upper bound on

optimal promises in the long run, the main result in this section, stated in Theorem 1.

LEMMA 2. Let assumptions 1-3 be satisfied. For every (w,y’) € W XY, if g, (w) > UA4(y'), then

gy (w) < w. Furthermore, for each 3/, there exists a unique w,s such that g, (w,) = w, = U4 (y').
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Proof. See Appendix

THEOREM 1. Let assumptions 1-3 be satisfied. There exists a w such that g, (w) < w for every

w > w and every y' €Y.

Proof. See Appendix

Note that the preceding theorem implies that whenever w € [w,w] = W, then for all ¥ €Y,
the constraint g,/ (w) < w is never binding; since the constraint set in the original dynamic program-
ming problem without the additional constraints is convex, the policy functions characterized in this
section are also the optimal policies for the original problem for all w € W. For any (wp,yo) € W xY
these policies then induce efficient sequential allocations as described in Section A.

The policy functions g, together with the transition matrix 7 induce a Markov process on
W xY. In the next subsection we will show that this Markov process has a unique invariant measure,
the long-run cross sectional distribution of utility promises (and hence welfare) and income, for any

given fixed R € (1, %)

C. Existence and Uniqueness of an Invariant Probability Measure

Let B(W) and P(Y') the set of Borel sets of W and the power set of Y. The function g, (w),
together with the transition function 7 for the endowment process, defines a Markov transition
function on income shock realizations and utility promises @ : (W x Y) x (B(W) x P(Y)) — [0,1]

as follows:

m(y') if gy(w) €W
(22) Q(w,y,W,¥)= > (v) if gy (w) €

y'ey 0 else
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Given this transition function, we define the operator T* on the space of probability measures

A(W xY),(B(W) xP(Y)) as

(23) (TNWY) = [ Qg W, Y= 3 =) [ aA

y'ey {w€W|gyl (w)GW}
for all W, Y) € B(W) x P(Y). Note that T* maps A into itself (see Stokey et. al. (1989), Theorem
8.2). An invariant probability measure associated with @ is defined to be a fixed point of T*. We

now show that such a probability measure exists and is unique.

THEOREM 2. Let assumptions 1-3 be satisfied. Then there exists a unique invariant probability
measure © associated with the transition function @ defined above. For all &g € A(W xY), (B(W) x

P(Y)), (T*®g)" converges to ® in total variation norm.

Proof. See Appendix

Note that Lemma 2. and Theorem 1. above imply that any ergodic set of the Markov process
associated with @ must lie within [U4% (ymin), U4 (Ymax)] X Y and that the support of the unique
invariant probability measure is a subset of this set.

So far we proved that, for a fixed intertemporal price R, policy functions (h, g,), cost functions
V' and invariant probability measures ® exist and are unique. From now on we will index (h, g,/),V
and ¢ by R to make clear that these functions and measures were derived for a fixed R. In the next
section we will discuss how to find the intertemporal price R* associated with an efficient stationary
allocation. Remember from Subsection A that this requires the allocation to satisfy the aggregate
resource constraint with equality, a constraint that we have not yet imposed and will do so in the

next subsection in order to solve for R*.
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D. Determination of the “Market Clearing” R

In this section we will analyze how the resource requirements imposed by the cross-sectional
distribution of utility promises ®p vary with R. We will provide conditions under which an R* exists
for which these resource requirements exactly equal the aggregate endowment in the economy.

In the previous section we showed that for a fixed R € (1, %) there exists a unique stationary

joint distribution ® over (w,y). Define the “excess demand function” d : (1, %) — R as

24) d(R) = [ Vi(w)dbr - [yddy

In this section we discuss the qualitative features of the function d(.). Since by assumption y :=
Jyd®p does not vary with R, the behavior of d depends on how Vi and ®p vary with R. The
behavior of & with respect to R in turn depends on the behavior of gf, with respect to R as gz]}
determines the Markov process to which @ is the invariant probability measure. Following Atkeson
15

and Lucas (1995) we can show that d(R) is continuous and increasing on (1, %)

Thus, if one can show that

(25)  lmd(R) < 0

(26) lim d(R) > O
R/%

then the existence of a resource-clearing R* follows.!6

15 Again the arguments are adaptations of Atkeson and Lucas’ (1995) results and available in Section 1.3 of the
separate theoretical appendix at http://www.stanford.edu/~ dkrueger /theoreticalapp.pdf. For continuity of d(R) one
shows that Vg is uniformly continuous in R and that gf, is continuous as a function of R so that &z is continuous in
R (in the sense of weak convergence). For monotonicity of d(R) the key results are that gf, is increasing in R so that
®R(.,y) is increasing in R (in the sense of stochastic dominance), which, together with the fact that Vz is increasing
in w proves that d(R) is an increasing function.

16 Also note that, given our previous theoretical results, it is straightforward to search for R* numerically: fix an R,
solve the planners’ dynamic programming problem (which we proved to have a unique solution), determine the induced
invariant measure over promises (whose existence and uniqueness we proved), and compute d(R°). If d(R°) > 0, reduce
the guess for R, otherwise increase it. We have included details of our computational algorithm in Section 2 of the
separate theoretical appendix, available at http://www.stanford.edu/~ dkrueger/theoreticalapp.pdf.
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The Case R = %
In this subsection we characterize optimal policies of the planner for R = % and provide a

sufficient condition for (26) to hold. Note that for R = %

w if w > UA(y)
27) gy (w) =
U (y') if w < UA% ()
from the first order conditions of the recursive planners’ problem (which still has a unique solution as
all the results of Section B go through). Now there is a continuum of invariant measures associated
with the Markov chain induced by the optimal policies. From (27) it is clear that any such measure
) 3 satisfies w ¢supp (<I> 1 ) for all w < U2 (ymax) as the probability of leaving such a w is at least
7(Ymax) and the probability of coming back (into a small enough neighborhood) is 0. Therefore all
w in the support of any possible invariant measure satisfy g,,(w) = w. From the promise-keeping
constraint h(w) = w follows, and each individuals’ consumption is constant over time: for R = %
there is complete risk sharing.
For complete risk sharing to be efficient it has to satisfy the resource constraint. Since the
cost function Vg is strictly increasing in w, the one of the continuum of invariant measures with

lowest cost is

m(y) ifw= UAUt(ymaX)

0 if w# U (ymax)
All individuals receive utility promises w = UA" (yp. ) and hence the same current utility A(U4A% (ymax)) =
U (ymax ). This allocation has per-period resource cost C(UA% (ypax)) and is resource feasible if
and only if C(UA™ (ymax)) < 7, or applying the strictly increasing period utility function u to both

sides, if and only if U4 (ymax) < u(7). Let the net resource cost of this allocation be denoted by

1 u _
29) d(5) = CUM (ame)) = 5
We summarize the discussion in the following
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LEMMA 3. Let assumptions 1-3 be satisfied. For R = % any solution to the recursive social planners’
problem exhibits complete risk sharing. There exists an efficient stationary allocation with complete

risk sharing if and only if U4 (ymax) < u(7).

Intuitively, the lemma states that it is constrained efficient to share resources equally among
the population in this economy if the agents with the highest incentive to renege on this sharing
rule, namely the agents with currently high income, find it in their interest to accept constant
consumption at ¢ = g and lifetime utility w(y), rather than to leave and obtain lifetime utility
UAut (ymax)

Using arguments similar to showing continuity of d(R) on (1, %) one can show that lim, . 1 d(R) =

d (%) , where d (%) is defined as in (29). In order to rule out complete risk sharing!” we now make
Assumption 4: U2 (y0x) > u(f)

Note that this assumption is satisfied if the time discount factor 3 is sufficiently small, agents

are not too risk-averse or the largest endowment shock is sufficiently large. We obtain
LEMMA 4. Let assumptions 1-4 be satisfied. Then limR/% d(R) > 0.

Proof. Applying the strictly increasing cost function C' to the inequality of assumption 4 gives

1(5) =€ (U4 ) =5 >0

The Case of R Approaching 1
In this subsection we provide necessary and sufficient conditions for autarky (all agents con-
sume their endowment in each period) to be an efficient allocation and characterize policies for R

approaching 1 from above.

'71f there is complete risk sharing under a particular tax system (remember that the tax system maps a given pre-tax
income process into a particular after-tax income process), then a small tax reform has no effect on the extent of risk
sharing since the resulting allocation is the complete risk sharing allocation: our crowding-out effect is absent.
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If agents are very impatient and/or the risk of future low endowments is low, then it is not
efficient for the planner to persuade currently rich agents to give up resources today in exchange
for insurance tomorrow. For r = —1 (no saving after default, as in Kehoe and Levine (1993) )this

result can be stated and proved formally in the next

LEMMA 5. Let r = —1 and let assumptions 1-3 be satisfied. Autarky is efficient if and only if

Ul(ymin)
(30) 671/ (o) <1

Proof. For the if-part we note that the autarkic allocation satisfies the first order conditions for

some R > 1if (30) holds. Since autarky is constrained feasible, it is efficient.!® The only-if part is

proved in the appendix.

The previous lemma provides a condition under which d(R) = 0 as R approaches 1, with

autarky as the (efficient) allocation. In order to assure that autarky is not efficient!? we make

Assumption 5:

’LL/ (ymin)

(31) Bu’(ymax)

> 1

With assumption 5, as R approaches 1, the resulting allocation features some, but (as long
as assumption 4 holds) not complete risk sharing. We state the following conjecture, which we were
able to prove for CRRA utility, 7 = —1 and Y = {y;,yn} but not for the general case considered

here.20

CONJECTURE 3. Let assumptions 1-5 be satisfied. Then there exists R > 1 such that d(R) < 0.

¥ This is in fact true for arbitrary r > —1.

191f the efficient allocation is autarkic a small change in the tax system changes the allocation on a one to one basis
with after tax incomes. No private insurance is crowded out since no private insurance takes place.

20Given our other theoretical results, we can check whether d(R) < 0 for R sufficiently close to 1 numerically. In all
our quantitative experiments this was the case.

21



We then can conclude our theoretical analysis of stationary efficient allocations with the

following theorem, whose proof follows directly from the previous lemmas and conjecture.?!

THEOREM 4. Let assumptions 1-5 be satisfied. There exists R* € (1, %) such that d(R*) = 0. The

allocation induced by (hR*,gﬁ*) is efficient and has some, but not complete risk sharing.

As indicated above, some of our results and proof strategies resemble Atkeson and Lucas
(1995). The basic strategy to prove existence of a stationary general equilibrium (as we will show
in the next section stationary efficient allocations induce stationary equilibrium allocations) also
exhibits similarities to existence proofs for standard incomplete markets models as in Huggett (1993)
and Aiyagari (1994).22 The main difference is that the authors, due to the simple asset structure
in their models, can tackle the equilibrium directly. As we do, they first, for a fixed and constant
interest rate, solve a simple dynamic programming problem? (they for the single household, with
assets as state variable, we for the planners, with utility promises as state variables). Then they
let the optimal policies induce a Markov process to which a unique invariant distribution is shown
to exist.?* Finally the market clearing interest rate is determined from the goods or asset market
clearing condition.?> These similarities in the theoretical analysis also suggest similar computational

algorithms when solving both models numerically.

21 No claim of uniqueness can be made. In all our numerical exercises d(R) was strictly increasing, however, yielding
a unique R* and associated unique stationary efficient allocation.

*2We will contrast the quantitative findings from our model with the Huggett (1993) version of the standard
exogenous incomplete markets model in Section 10.

23 As in our model, boundedness of the state space for assets from above has to be assured. Huggett assumes that
income can only take two values, but doesn’t need the stochastic process to be iid over time nor any assumption on the
period utility function. Aiyagari assumes iid income and u to be bounded and to have bounded relative risk aversion
-see his working paper. We do not require any boundedness assumption on u, but need the ¢id assumption.

24The theorems invoked for the existence of a unique invariant measure are similar in spirit; in particular they all
require a “mixing condition” that assures that there is a unique ergodic set. In their setting agents with bad income
shocks run down their assets, and good income shocks induce upward jumps in the asset position; in our setting agents
with bad shocks move down in the entitlement distribution towards UA“t(ymin), with good shocks inducing jumps
towards higher w, due to binding participation constraints.

2 Huggett provides no theoretical properties of the excess asset demand function, in Aiyagari the presence of
physical capital, which makes the supply of assets interest-elastic, assures (together with continuity of the asset
demand function) the existence of a market-clearing interest rate.
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4. Decentralization

In this section we describe how we decentralize a stationary efficient allocation h = {h;(wo,y")}2,
induced by the optimal policies from the recursive planners’ problem as a competitive equilibrium
as defined in Section 3. Let 8'7(y!|yo)u(ao,y’) > 0 be the Lagrange multiplier associated with the
continuing participation constraint at history y* and P(y’) = {y"|n(y*|y") > 0} be the set of all
endowment shock histories that can have y' as its continuation. Using the first order necessary

conditions of the household’s maximization problem (6) one obtains

5“’ (ct(ao, y™ D)) w(y™ yo)  pra(@th) 1+ Xyrepr) Mao,y")

2 —
B2 B el ) a W)~ p) TF Srergein) ilansy")

Obviously, an agent whose participation constraint does not bind at contingency y*!, following
history y?, faces the standard complete markets Euler equation (as u(ag,y'*t) = 0).

Now consider the efficient allocation of utilities {h;(wo,y")} as found in the previous section.
Combining the first order condition and the envelope condition from the planners problem we have

for an agent that is unconstrained?® (see (20) and (21)):

1 _ 5 C' (ht(wo,y)) :ﬁul(ctﬂ(wo;yt“))
RO (hyga(wo,y™th)) —  w/(ce(wo,y))

(33)

This suggests that the equilibrium prices satisfy (with normalization of py = 1)

_ 7T(?Jt|y0)

(34) p(y') = — Rt = pem(y [yo)-

with p, = R™'. That is, the price for a commodity delivered contingent on personal histories is
composed of two components, an aggregate intertemporal price p; = R~! and an individual specific,

history dependent component, equal to the probability that the personal history occurs.

26 . . . ’ .
°If no agent is unconstrained we are in autarky and can take & = ﬂ%
max
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Given prices, the initial wealth level that makes the efficient consumption allocation affordable

for an agent of type (wo,yo) is given by

o v T y0) ’
(35) ao=co(wo,y0) —yo+ Y > —R (Ct(wo,y ) — yt) = ap(wo, Yo) < 00
t=1y'lyo

where the last inequality follows from the fact that the efficient consumption allocation is bounded
from above.?” Finally, the equilibrium consumption allocation corresponding to the efficient alloca-

tion is given by?®

(36)  cilao,y') = culag (wo, o), y") = C (he(wo, ")) -

The preceding discussion can be summarized in the following

THEOREM 5. Suppose that { hy(wo, yt)}fio is a stationary efficient allocation (with associated shadow
interest rate R > %) Then prices {pi(y*)} and allocations {ci(ao,y")}, as defined in (34) and (36)

are an equilibrium for initial wealth distribution ©¢ derived from ®¢ and (35).

Proof. See Appendix

So far we have shown the existence of a stationary equilibrium of our economy and charac-

terized some of its properties. In the next section we illustrate some of its qualitative features.

5. Qualitative Features of the Efficient Allocation
In this section we illustrate some of the qualitative features of the efficient allocation char-
acterized in the section above. To do so we consider a simple numerical example of our economy

in which the endowment process can take only two values, y; < yp, and saving after default is not

2TTherefore, to decentralize a particular stationary efficient consumption allocation we require a very particular
initial distribution over initial assets. In this sense one of the primitives of our model, ¢, can’t be chosen arbitrarily,
which is true in all steady state analyses.

*®Given that the optimal recursive policy function h(.,y) is a strictly increasing function in w, the h:(.,y") and
hence the ci(.,y") are strictly increasing in wo. Therefore ag(.,yo) is strictly increasing and thus invertible. We denote
its inverse by ag®.
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permitted (r = —1). Figure 1 shows the invariant consumption measure for this example. As shown
in the theoretical part the support of the distribution of utility promises w falls into the inter-
val [UA" (y;), UA% (y,,)]. With no saving after default it follows that the support of the stationary
consumption distribution falls into the interval [y;, ys].

We showed that for all w € [UAY (y;), UA% (yp,)], gy, (w) = U (yp,), so that all agents with
the high income shock arrive tomorrow with the same utility entitlement w’ = UA"(y;,) and thus
will consume the same, C(h(UA"(yp)) < yp,. Thus, for agents with high income their history does
not matter. As seen from Figure 1, for agents with low income realizations history does matter.
With one bad income shock an agents’ utility promise falls from w = U4 (y,) to w' = gy, (w) < w
and consumption falls to C'(h(w')) < C(h(UA% (yy,)). With further low income realizations the agent
works herself through the utility entitlement and consumption distribution, until w = U4%(y;) and
consumption level C(h(U4% (y;)) is reached. A single good income shock catapults the agent back
to consumption level C'(h(U"(yy)). Note that current income and current consumption of agents
are positively correlated, and that there is some, but not perfect risk sharing.

These results are only suggestive for an economy with more than 2 shocks. However, the
phenomena of jumping up upon receiving high endowment shocks and stepwise working through the
distribution with low endowment shocks is an inherent property of the model. For higher numbers
of exogenous states a richer consumption distribution “in the middle” arises. We now parameterize

the economy using US data and use it for our quantitative tax exercises.

6. The Policy Experiments

In this section we describe the policy experiments we conduct. It is our goal to investigate how
different tax systems affect the steady state distribution of consumption and welfare. In particular we
use the model to measure the extent to which public risk sharing mechanisms (i.e. progressive taxes)

and private risk sharing mechanisms (i.e. financial markets) help to insulate private consumption
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from random income fluctuations.

We first use CEX data to obtain a tax system that we identify with the current (progressive)
tax system in the US. Keeping the pre-tax income process unchanged we then study how a change
in the tax system affects steady state allocations and welfare.

It is important to stress that we have to restrict our analysis to a comparison of steady
states. An unexpected change in government policies changes the possible distribution of lifetime
expected discounted utilities this economy can attain with given aggregate resources (which remain
unchanged). Thus, for a particular agent the promised utility w she entered the period with is
not a valid description of her state after the change in fiscal policy anymore. Consequently a
method that employs promised expected utility as a state variable cannot be employed to compute
transitional dynamics induced by unexpected policy innovations.?? Steady state welfare comparisons
may distort the true welfare effects of policy reforms because it ignores welfare losses (or gains)
along the transition path. In economies with capital accumulation higher investment (and thus
lower consumption) is required to reach steady states with a higher capital stock and thus higher
steady state consumption. In our economy, however, the total amount of resources available for
consumption is constant along the transition path and in the new steady state, so that any transition
welfare effect due to a change of a physical state variable is absent; we therefore conjecture that the
welfare conclusions we derive are robust to an explicit analysis of the transition dynamics induced

by a change in fiscal policy.

29 Technically speaking, after the unexpected change in fiscal policy either some of the promise-keeping constraints
are not binding anymore or some of the debt constraints are violated. Any transition analysis in this economy has to
tackle the competitive equilibrium directly, where the equilibrium is formulated as a sequential markets equilibrium
in the spirit of Alvarez and Jermann (2000).
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7. Calibration

First we describe how we set the parameters governing the individual endowment process,
together with the government policies (spending and taxes). We then discuss our selection of the
preference parameters (3, the subjective time discount factor, and o, the coefficient of relative risk

aversion, as we assume that the period utility function is of CRRA-form.

A. Endowment Process

To characterize the Markov chain governing the individual endowment process in the model
we need to set the N possible values the endowment e; can take and estimate the transition matrix
7(et+1ler). In order to do so we use household level data from the Consumer Expenditure Survey
(CEX) for the years 1986-1998. We use CEX income data, whose quality is supposedly inferior
to PSID data because the CEX reports also taxes paid by the household members and transfers
received, such as welfare and unemployment insurance payments. We try to reduce measurement
error by excluding from our sample households classified as incomplete income respondents, as
suggested by Nelson (1994). For the same reason we exclude households that report negative total
consumption expenditure. Also, since we interpret our pre-tax endowment concept from the model
as labor income we exclude households which are solely composed of members that are older than
64 years and families without labor income earners.

The CEX quantity we interpret as e;, household endowment before taxes, is labor earnings.
In the data we measure this entity by the sum of labor earnings, plus a fraction’ of business
and farm income earned by all the members of the household, all divided by the number of adult

equivalents®! in the household.

30The fraction of business and farm income we impute to labor income is 0.864 as reported in Diaz Jimenez, Quadrini
and Rios Rull (1997).

31The number of adult equivalents is defined as in Deaton and Paxson (1994) as the number of households members
over age 16 plus .5 times the number of members below age 16.
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We pick N =5 . The transition matrix 7(e;+1]e;) is computed as follows. For any period ¢ in
the CEX sample we group households into 5 relative earning classes delimited by 4 uniformly spaced
quintiles: the first class is composed by the bottom 20% of the earning distribution in that quarter,
the second class by the following 20% and so on. We then search for all households for which we
have earning observations in two consecutive periods and compute which relative class they belong
to in the second period. Note that the class delimiters are time-dependent in order to take into
account of aggregate growth. We repeat this for every period in the sample. Then the probability of
transiting from class ¢ to class j is given by the number of households transiting from ¢ to j, divided
by the total number of households starting in class 7 for the entire sample. To set e; ..,en we first
compute, in each quarter, the median earning within each earnings class. We detrend it by taking
its ratio to the overall median earning for that quarter and then set e; ..,ey equal to the average
across quarters of the median (detrended) earnings in each earning class. Tables 1 and 2 show the

results of this exercise.

B. Fiscal Policy

To characterize current fiscal policy we need to measure the values of 7(e;),7 = 1,...,N.
In the CEX households are asked to report federal, state and local taxes deducted from their last
paycheck separately from any additional (not deducted from paycheck) federal, state and local taxes
paid. We add to taxes social security contributions and subtract transfers (welfare, unemployment
compensation and food stamps). We then set 7(e;) equal to the ratio between the total sum of
federal, state and local taxes and social security deducted from paycheck, net of transfers, in the
j-th earnings class and the total labor income as measured above in the same class. Once the tax
policy is set we can compute the implied level of government spending (net of transfers) such that
the budget is balanced in every period. The tax policy we will use in our experiments is the average

of the tax policies measured in the last four years of the sample (1995-1998) and is reported in table
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3. The implied government spending, net of transfers, is equal to g = 14.9% of total endowment.

C. Preference Parameters

We calibrate the preference parameters (o, 3) so that the solution for the benchmark model
delivers an interest rate of 2.9% per year. This was the average real return on high grade municipal
bonds?®? over the period 1986-1998. We use this interest since returns on municipal bonds are usually
tax-exempt and hence marginal tax rates for interest income need not be specified.

We set ¢ equal to 2 and then choose 3 so to match the interest rate. The non-standard
part of this exercise is that in a debt constrained economy for a given ¢ there might be multiple 8
that deliver the same interest rate. Figure 3 shows the relation between the time discount factor
and the interest rate in our calibrated economy: the figure shows that there are three values of 3
that generate an equilibrium interest rate of 2.9%. To understand the non-monotonic relationship
between R and 3 note that the real interest rate is given by the marginal rate of substitution of an

unconstrained agent

1 3 max v/ (cg41(wo, Z/Hl)

R wo,yttt ! (ce(wo, yt))

For any value of ¢ if the time discount factor 3 is sufficiently close to 1 the efficient allocation involves

o (cry1(wo,y*Ht)

complete risk sharing of idiosyncratic risk, individual consumption is constant ; . is
? » T (e (wo,yt))

always equal to 1 and the gross interest rate R equals %, hence is decreasing in 3.

As [ is reduced, complete risk sharing is no longer an equilibrium and there are two effects on
the equilibrium interest rate. On one hand there is the standard effect: with a lower (3 individuals
care less about the future, want to save less and an increase in interest rate is needed to restore

equilibrium in the credit market. On the other hand a lower 3 reduces possible risk sharing®® and

#2The series for the returns is available on the Economic Report of the President, (2000), Table B-71.
33Households with high income realizations discount the future possibility of having low income heavily and thus
large transfers from these agents to low-income agents violate the continuing participation constraints.
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increases consumption risk faced by agents; this effect induces consumers to save more and thus a
reduction in the interest rate is needed to restore equilibrium.
Figure 3 shows that when  is relatively close to 1 the first effect dominates and when g is

relatively close to 0 the second effect dominates. Finally if 3 is sufficiently close to 0 then autarky is

’U/ (ymin)
o’ (ymax) )

the efficient allocation, the interest rate is given by % =7 and there are no longer changes
in the consumption allocation, implying that the interest rate is again decreasing in 3.

For a value of o = 2 there are three possible values of 3 (8 = 0.02,5 = 0.024, 3 = 0.967)
consistent with an interest rate of 2.9% . Since the allocation arising under 3 = 0.02 is the autarkic

allocation®?

we will focus only on the allocation arising under 8 = 0.024 and 3 = 0.967.
Finally we specify the consequences of default as exclusion from insurance and credit markets.

Individuals, however can privately save at interest rate r even after default. We set r = 2.9%, i.e.

individuals can save at the equilibrium interest rate after default.

8. Results for Policy Experiments
Before we present our numerical results we define different measures of risk sharing. We
define Total Intermediation (TI) of risk as one minus the ratio between the standard deviations of

log-consumption to log-pre-tax income:

std(log(c))
std(log(e))

TI=1-
Note that when std(log(c)) = 0, TI = 1; consumption does not vary at all across individuals and
the economy exhibits complete risk sharing. If std(log(c)) = std(log(e)), T1 = 0 and consumption

varies one to one with pre-tax endowments For 0 < T'I < 1 there is some, but not complete risk

sharing, with higher T indicating higher risk sharing.

34 The quantitative feature of the autarkic allocation are very similar to those of the allocation arising with a discount
factor of B = 0.024
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We can decompose T'I into two components reflecting risk intermediation enforced by the gov-
ernment (GI) via the tax system and risk intermediation achieved in addition by private insurance

contracts, (PI). We define

std(log(y)) _, _ std(log(c))
std(log(e)) Pr=1 std(log(y))

Gl=1-
When std(log(y)) = std(log(e)), GI = 0. After-tax income is as variable as pre-tax income, which is
the case if the tax system is proportional. If std(log(y)) < std(log(e)), GI > 0 and the tax system
is progressive, with the extreme of complete redistribution via the tax system, std(log(y)) = 0
and GI = 1. On the other hand, if std(log(y)) > std(log(e)), GI < 0 and the tax system is
regressive. The interpretation of PI is similar: if std(log(c)) = 0, PI = 0 and there is complete
risk sharing achieved through private markets. If, on the other hand std(log(c)) = std(log(y)),
PI =0 and private markets do not achieve any risk sharing over and above that achieved by the tax
system. Note that TT = GI + (1 — GI) x PI. Hence total intermediation of risk equals government
intermediation of risk plus private intermediation of that part of risk that is not already removed
by the tax system. In particular, under a proportional tax system GI = 0 and 71 = PI. We will
report the measures 71, GI and PI for all our policy simulations.

As described above we consider the following policy experiment: change the tax system from
the progressive system found in the calibration section to a proportional system (constant average
tax rates), keeping the level of government spending constant. We compare interest rates, measures
of intermediation of risk, welfare (in income units) *> and consumption inequality (as measured by

the Gini index) in the steady states arising under the two tax systems. The results of our policy

experiments are summarized in Table 4. For the high value of § = 0.967 a switch from a progressive

3 To measure welfare we first determine which tax regime yields higher ex-ante welfare, where ex-ante welfare is
measured as f h(w,y)d® = f wd®. We then increase the after-tax endowment of every agent by % in the tax regime
with lower welfare and report that x for which ex-ante welfare in the dominating tax regime coincides with that in
the dominated tax regime in which z% of resources have been added.
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to a proportional tax system leads to a reduction of publicly enforced risk sharing from 19.7% to
0. But risk sharing achieved via private arrangements increases with the proportional system since
the value of autarky falls and hence the debt constraints are relaxed. This effect is sufficiently
strong to raise total risk sharing with proportional taxes over the level achieved with progressive
taxes. Therefore ex-ante welfare increases by 0.1% with such a tax reform. It is worth noting that
consumption inequality is reduced by this change, showing that rich households are not the only
beneficiaries from the increase in welfare. In particular households with low income now face less
binding borrowing constraints and can increase their consumption borrowing more. In summary, the
government, in trying to help households to share risk by making the tax system more progressive,
achieves exactly the opposite -lower risk sharing and welfare. Again, this result is obtained in a
model in which progressive taxes do not distort the labor-leisure decision.

Also note that the interest rate rises with the switch to the proportional system. This is be-
cause proportional taxes lower the value of default, hence relaxing the debt constraints. Households
can now borrow more and the interest rate has to rise to bring credit markets back into equilibrium.

The results from our policy experiment are drastically different for the case of low time
discount factors. If agents discount the future very heavily, the extent of risk sharing achievable
with self-enforceable private contracts is very limited, as the threat of future exclusion from credit
markets is not severe for very impatient agents. We see from the table that the low risk sharing
allocation is significantly different from the high risk sharing allocation. The effect of the tax
reform on government intermediated risk sharing is similar to the case with high discount factor (by
construction). Now, however, private markets are almost completely ineffective in providing risk
sharing for both tax systems. Hence total intermediation of risk consists (almost) exclusively of GI.
This explains the large welfare losses going from a progressive to a proportional system. In this case

consumption inequality rises as a consequence of the change in the tax system.
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Again the interest rate rises (this time very sharply) with the proportional system. Comparing
the high risk sharing with the low risk sharing case we conclude that when private markets are very
effective in providing risk sharing contracts, then the attempt of the government to do even more
may be counterproductive. If, on the other hand, private markets do not work because it is difficult
to enforce private contracts then public risk sharing provided by redistributive taxation leads to

potentially large welfare gains.

9. Sensitivity Analysis

In this section we explore the sensitivity of our quantitative findings to changes in the para-
meter values. In particular we consider changes in the risk aversion coefficient, in the persistence of
the income process and alternative changes in the tax system. Throughout this section we focus on

the high risk sharing case, corresponding to a 3 = 0.967.

A. Risk Aversion and Persistence

We first compute the impact on risk sharing (measured as total intermediation) of the same
change in the taxation schemes analyzed in the section above. The first two rows of table 5 we
consider economies with a risk aversion parameter of 2.5 (High Risk Aversion) and 1.5 (Low Risk
Aversion). In the third and fourth rows we analyze economies with different persistence of the
income process. In particular we consider a modified transition matrix for the endowment process
I = (1 — )l + al where I is the identity matrix®. We consider two cases: a = 0.1 (High
persistence) and aw = —0.1 (Low Persistence).

The results in the table show how the higher the risk aversion and the lower the persistence

of the income process the higher the level of risk sharing, since the value of autarky is reduced.

Note, however, that in all cases reported a change from proportional to progressive increases total

36We adopt this way of modifying the persistence of the income process from Alvarez and Jermann (2000).
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risk sharing of the economy, meaning that the increase in private intermediation more than offsets
the reduction in public risk sharing. The results also suggests that if risk aversion is sufficiently
high, exclusion from credit markets is a harsh punishment and complete risk sharing through private
financial markets is achieved, independently of the tax system. In this case, obviously, a change in

the tax system would have no effect on consumption allocations.

B. Tax Policies

Instead of focusing on a discrete change in the tax system we now analyze how total risk
sharing evolves with a marginal change in progressivity. We restrict our discussion to a tax system
of the form

b
T(ej) =a—— j=1,...5
€j

i.e. to a system with constant marginal tax rate a and a fixed deduction b. We estimate a and b by
running a regression on our five data points for taxes derived from CEX data. We find estimates
a = 25% and b = 9.6%. The R? of this regression equals a very high 0.995, so that the progressive
tax system used in the last section is almost perfectly approximated by a tax system with a constant
marginal tax rate of 25% and a fixed deduction of 9.6% of mean per adult earnings (see Figure 4).
The implied level of government spending equals 15.5% of average pre-tax earnings, which is similar
to the level we used in the previous section. We now vary the degree of progressivity marginally by
marginal changes in the deduction b, with varying a correspondingly to assure that all tax systems
generate the same revenue®’. Note that for b = 0 we are back in the proportional tax system from
the last section. In Figure 5 we plot total risk sharing against the deduction b, where total risk
sharing is measured as T'I. Complete risk sharing in this economy can be achieved with two rather

extreme policies. One policy that obviously achieves the first best allocation is to tax all income

3"Normalizing the endowments so that Z?Zl II(e;)e; = 1 one obtains that to keep the tax revenues constant requires

to set a = g + .
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differences away, i.e. making the system extremely progressive and equalize after-tax income of all
agents. This is achieved by taxing income at a 100% rate (a = 1) and by setting the deduction equal
to the average income (b = (1 — g) = g). One the other hand, making the tax system sufficiently
regressive makes the punishment from default sufficiently harsh and allows private financial markets
to achieve perfect risk sharing. This occurs for b < 0.1, i.e. for a poll tax of at least 10% of mean
pre-tax earnings. In between these extreme cases the effect on total risk sharing (and hence ex-ante
welfare) of a marginal increase in tax progressivity depends on the relative magnitudes of the two
effects at work: the direct effect of reducing the variability of after-tax income and the indirect
crowding-out effect.

For a fixed deduction of b < 0.39 the crowding-out effect dominates; more progressivity
reduces total risk sharing and, therefore, ex-ante welfare. Notice that this is a large range of tax
policies; furthermore the experiment considered in the previous section falls into this class. For
b > 0.39 the direct effect dominates and more progressive taxes lead to more total risk sharing
among individuals and higher welfare. Overall the welfare differences between the worst tax regime

(b =10.39) and first best amounts to about 1% of average income.

10. Incomplete Markets

In this section we contrast our findings with the welfare effects of the same reform in a
standard incomplete markets model. In this economy agents are only allowed to trade a single
uncontingent bond and they face an exogenously specified constant borrowing limit. There are no
enforcement problems in this economy. The economy we consider is similar to the one studied by

Huggett (1993). The household problem in recursive formulation reads as

vlay) = | max (1= 0Buly+Ra—d)+5Y o(d,y)n(yly)
Z= — y/
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where a are holdings of the one-period bond and R — 1 is the interest rate on these bonds. Again
we compare stationary equilibria under different tax systems.

To enable comparison with the debt constrained economy we calibrate this economy to the
same observations. In particular, the endowment and tax processes are kept the same. The coeffi-
cient of relative risk aversion is again chosen to equal ¢ = 2. We then identify pairs of borrowing
limits b and time discount factors (3 such that the equilibrium interest rate equals 2.9%. Table 6
presents the results for our policy experiments for a selection® of (b, 3)-pairs

Note that a switch from a progressive to a proportional tax system induces large welfare
losses and increases in consumption inequality. Redistributive taxes act as a partial substitute for
private insurance markets that are exogenously assumed to be missing from this economy. Removing
this substitute for private markets has negative welfare consequences. This is true regardless of how
tight the borrowing limit is specified. In contrast to the debt-constrained economy a tax reform (by
assumption) does not change the assets that can be traded nor the extent to which they can be
traded. Therefore the crowding-out effect that was crucial in the previous sections cannot occur in
this economy.

Finally note that while in the debt-constrained economy a shift from progressive to propor-
tional taxes causes an increase in the interest rate, in this economy the interest rate falls. Remember
that the tax change increases income risk. In this economy agents thus increase precautionary saving

and this excess saving reduces the interest rate.

3% There is a limit as to how negative one can chose b. This limit is given by the constraint that agents with ¥ = ymin
and a = —b can attain nonnegative consumption by setting a’ = —b at the equilibrium interest rate (for both tax
systems). This limit on b turns out be approximately equal to 7. Since the average before tax income is normalized to
1 b can be interpreted as the ratio between the maximum borrowing limit and the average annual pre-tax earning.
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11. Conclusion

In this paper we present a model that highlights a new channel through which income taxation
affects private financial markets. Although in our model taxes do not directly affect labor-leisure and
wealth accumulation decisions they affect the functioning of private financial markets by changing
the incentives to default on private contracts. We show that when private insurance markets are
active, public risk sharing provided via taxes crowds out private risk sharing. In order to gain some
insights into the magnitude of this effect we calibrate our very simple model to US income and tax
data in order to quantify the effects of changes in the progressivity of taxation. We find that the
magnitude of the crowding-out effect depends crucially on the level of risk sharing that is achieved via
private contracts. When risk sharing provided by private markets is low, crowding out is small and
redistribution through taxes is welfare improving, while in high risk sharing regimes redistribution
through taxes crowds out private financial markets more than one to one, and therefore is welfare
reducing, even if the tax reform does not have adverse incentive effects on the labor supply decision.

In contrast, if private insurance markets are assumed to be missing for model-exogenous
reasons, a tax reform that reduces the variance of after-tax income serves as a partial substitute for
private insurance markets and leads to unambiguous welfare gains, absent labor supply incentive
distortions. This indicates that the assumption about the structure of private capital markets is
crucial when analyzing redistributive government policies.

In order to isolate the effect of the tax system on private insurance markets as clearly as
possible we abstracted from several features of actual economies that are potentially important.
A comprehensive analysis of redistributive taxation should include the effects we highlight in this
work, together with the effects of a redistributive tax reform on incentives to work and on physical

capital accumulation. We view this as interesting issue for future research.
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Appendix

Proof of Lemma 1.:

We want to show that for all w < w < w < w, h(w) < h(w). Suppose not. Then from (20)
VE(gy (w)) > Vh(gy () for all y such that g, (@) > UA%(y'), and hence UA(y') < g, (1) <
gy (w) for all those y' by strict convexity of V. From promise keeping there must exist ¢’ such that
gy (W) < gy (W) = UA (), a violation of the debt constraint.

Now, since h is strictly increasing in w, C'(h(w)) < C'(h(w)). Suppose that g, (w) > UA%(y).
Then from (20) we have V},(gy (w)) < V}(gy (w)) and from the strict convexity of Vg it follows that
gy () > gy (w). Obviously, if g, (w) = UA(y') then gy () > gy (w).

Thus we conclude that either g, () > g, (w) or g, (w) = g, (1) = UA%(y') M

Proof of Lemma 2.:

Vg is strictly convex and differentiable. By assumption g, (w) > UA%(y'). Combining (20)
and (21) we obtain SRV (w) = Vi(gy (w)). Since R < % we have Vi(w) > Vi(gy (w)). By strict
convexity of Vg the first result follows. Hence g, (.) are always strictly below the 45° line in its
strictly increasing part. But g, (w) > UA%(y') for all w. Hence for w < UA%(y’) it follows that
gy (w) = U (y') > w. By continuity of g,/(.) we obtain that g, (U4 (y')) = UA*(y'), and from
the first result it follows that g, (w) < w for all w > UA¥(y') W

Proof of Theorem 1.:

Take w = max, U4 (y) +¢, for ¢ > 0. If g, (w) > UA¥(y’), then the previous Lemma yields
the result. If g, (w) = UA%(y'), then g, (w) = U (y') < max, U4 (y) < w

Proof of Theorem 2.:

We first prove that there exists w* € W such that w* > UA%(yp.,) and gy, . (w*) =
UA (ymax ), from which it follows that g, (w*) = UA%(y) for all w < w*.

Suppose, to obtain a contradiction, that g, (w) > UA% (ypax) for allw € W,w > UA% (05
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Then by Lemma 1. we have g,/ (w) = gy,...(w), for all ¥ € Y and all w > UA (y0x). By continuity
of g, and Lemma 2. we conclude that g, (U4 (ymax)) = UA%(ymax), for all y’ € Y. But since
U2 (ymax) > UA% (y') for all ¥ # Ymax, by Lemma 2. it follows that g, (U4 (Ymax)) < U4 (Yimax)
for all ¥’ # Ymax, a contradiction.
We now can apply Stokey et al., Theorem 11.12. For this it is sufficient to prove there exists
an ¢ >0 and an N > 1 such that for all (w,y) € (W,Y) we have Q" ((w,y, U (Ymax), Ymax) > €-
If w* > w this is immediate, as then for all (w,y) € (W,Y), Q((w,y, U (Ymax ), Ymax) >

T (Ymax), since gy (w) = UA" (yax) for all w € W. So suppose w* < . Define

(A1) d= min {w—gy,. (w)}

wE[w* 0|

Note that d is well-defined as g,, .. is a continuous function and that d > 0 from Lemma 2. Define
(A2) N =min{n € N|w —nd <w*}

and € = ﬂ(ymax)N . Suppose an individual receives ymax for N times in a row, an event that occurs
with probability e. For (w,y) such that w < w* the result is immediate as for those w, gy, (W) =
UA (ymax) and gy (UA" (Ymax)) = UA% (Ymax). For any w € (w*, @] we have gy, (w) < w —d,
Gy (Gyemar (W) < w — 2d, etc. The result then follows by construction of (N,e) R

Proof of Lemma 5.: We first show that there is an allocation attaining a distribution
of utility that stochastically dominates the utility distribution in autarky and requires no more
resources. It is then immediate that autarky is not efficient. In autarky the measure over utility

entitlements and endowment shocks is given by

(A3) o™ ({UM (y),y}) = 7(y)

We show that there exist allocations that attain the joint measure d defined as

S{UM(y),y}) = w(y)  all Y # Ymin
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i)({UAUt(ymin);ymin}) = W(ymin)(l_ﬂ—(ymax))

(A4) @, ymin}) = 7 (Yunin) T (Yomax)

where @ = UAut (Ymin) + € for small € > 0. Define dpmax and dmin implicitly by

(1 - 6) (u(ymm mm + 6 Z UAUt

£
Il

UAUt(ymax) = (1 _6)(u(ymax) — Omax +ﬁ Z UAut +67T(ym1n)w
YFYmin

(A5)

Since w = UAut(ymin) + &, we have

_ Pr(Ymin)
e = TTop)
(A6) Omin = a5

The autarkic allocation exhausts all resources. The new allocation reduces consumption for the
T (Ymax) agents with Ymax Dy Omax and increases consumption for 7(Ymax )T (Ymin) agents by Omin.

Hence, compared to the autarkic allocation the change in resource requirements is given by

A = —7(Ymax) C’ (4(Ymax))Omax + 7T(ymax)7T(ymin)C/ (4(Ymin))Omin

_ 7T(ymin)w(ymin)g —6 1
(A7) N (1 B 6) <u/(ymax) - ul(ymin)>

Therefore A <0 if and only if

u/(ymin) >1

(A8) B —= ()

Under this condition the new allocation is resource feasible, incentive feasible and attains <i>, a
distribution that dominates ®4%. It is straightforward to construct the sequential allocation h

induced by the recursive policies supporting ®. By reducing ho(UA™ (ymin), Ymin) so that the agents
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receiving discounted utility @ under P receive UAU (Ymin) the new allocation attains ®4“* but with
less resources, a contradiction to the assumption that autarky is constrained efficient. B

Proof of Theorem 5.

The allocation satisfies the resource constraint (9) since the efficient allocation does and ©g
is derived from ®g. Also the allocation satisfies the continuing participation constraints, and, by
construction of ag(wo,yo), the budget constraint. It remains to be shown that {c¢;(ag,y")} is utility
maximizing among the allocations satisfying the budget and the continuing participation constraints.

The first order conditions

(A9) (1= B)8'n(y'lyo) (eulao,y)) |1+ D plao,y™) | = Aao, yo)p(y!)

yTEP(y")

are sufficient for consumer optimality.?® Define Lagrange multipliers u(ao,y0) = 0, A(ao,v0) =

(1 =) (co(ao,y0)) and recursively

u' (co(ao, yo))
(A10) 1+ >  plao,y") =
yTZyt (BR)" ' (ct(ao,y"))
u (ct(a0,90))
BRY (ct41(ao,ytHL

Note that the allocation by construction (see 33) satisfies ) > 1, with equality if
the limited enforcement constraint is not binding. Hence u(ag,y'*) > 0 and u(ag,y!*t) = 0 if

the constraint is not binding. By construction the allocation and multipliers satisfy the first order

conditions. H

39The consumer maximization problem is a strictly convex programming problem (the constraint set with the debt
constraints remains convex). Note that since the efficient consumption allocation is bounded from above, the expected
continuation utility from any history y” onward, discounted at market prices R™7 goes to zero as T — oo (i.e.
the relevant transversality condition is satisfied). For details see Section 1.4 of the separate theoretical appendix.at
http://www.stanford.edu/~ dkrueger/theoreticalapp.pdf.
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Table 1. Endowment values
Ratio to the median (1986-1998, 89504 obs.)

(S]] (53 C3 €4 Cs
0.18 0.60 1.00 1.51 2.55

Table 2. Transition matrix m(e.|e)
(1986-1998, 27633 obs.)

Ctt+1
0.67 0.18 0.05 0.02 0.02
0.22 0.57 0.18 0.05 0.02
e | 0.06 0.19 0.56 0.18 0.03
0.03 0.05 0.18 0.60 0.15
0.02 0.02 0.03 0.15 0.78

Table 3. Tax rates
(1995-1998, 26333 obs.)

(er) 7(e2) 7(es) (eq) (es)
-40% +8.5% +14% +16.5% +19%



Table 4. Results for benchmark parameters

High Risk Sharing (f=0.967)  Low Risk Sharing (f=0.024)

Progressive Proportional ~ Progressive Proportional

Real Rate (R-1) 2.9% 3.1% 2.9% 117%
Intermediation
Government GI  19.7% 0.% 19.7% 0%
Private PI  92.3% 94.5% 0.2% 0.6%
Total TT 93.8% 94.5% 19.9% 0.6%
Consumption Gini 0.028 0.025 0.349 0.383
Ex Ante Welfare +0.1% +26%

Table 5. Total intermediation in various economies

Tax System

Progressive Proportional

High Risk Aversion  97.4% 100%
Low Risk Aversion 89.7% 90.5%
High Persistence 92.4% 93.4%
Low Persistence 94.6% 95%

Benchmark 93.8% 94.5%

Table 6. Results for bond economies

b=1, f=0.85 b=4, p=0.93 b=7, p=0.95
Prog. Prop. Progr.  Prop. Prog. Prop.
Real Rate (R-1) 29%  -1% 2.9% 1.8%  29%  2.0%

Intermediation
Government GI  19.7% 0% 19.7% 0% 19.7% 0%
Private PI 15.5% 24.8% 42.5% 38.4% 44.6% 42.2%
Total TT 32.1% 24.8% 42.5% 38.4% 44.6% 42.2%
Consumption Gini 0.22 0.25 0.15 0.16 0.13 0.14
Ex Ante Welfare +8.9% +4.6% +3.5%
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Figure 1. Consumption Distribution
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Figure 2. Relation between 3 and Real Interest Rate
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Figure 3. Average 1995-98 Tax Rates (Computed from CEX data)
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