Uncertainty Betas and International Capital Flows
by Francois Gourio, Michael Siemer and Adrien Verdelhan

Discussion by: Fabrizio Perri
Minneapolis Fed & NBER

NBER, Universities Research Conference
The Macroeconomic Consequences of Risk and Uncertainty
September 2014
The general research question

- What are the effects of volatility shocks in an open economy?
- In particular what are the effects on capital flows?
Outline

- On the empirical exercise
- On the model
- On gross v/s net capital flows
Uncertainty betas v/s relative volatility

• The paper estimates $\sigma_{it} = \beta_i \sigma_{wt} + \epsilon_{it}$

• Shocks to global volatility ($\Delta \sigma_{w}$) induce country specific volatility changes

• In high β countries volatility increases relative to low β countries, by $(\beta_H - \beta_L) \Delta \sigma_{w}$

• Why not focus on relative volatility (i.e. $\sigma_i - \sigma_w$) directly? (except for the fact that uncertainty betas sounds cool)
Uncertainty betas v/s relative volatility

- The paper estimates $\sigma_{it} = \beta_i \sigma_{wt} + \varepsilon_{it}$
- Shocks to global volatility $(\Delta \sigma_w)$ induce country specific volatility changes
- In high β countries volatility increase relative to low β countries, by $(\beta^H - \beta^L) \Delta \sigma_w$
Uncertainty betas v/s relative volatility

- The paper estimates $\sigma_{it} = \beta_i \sigma_{wt} + \varepsilon_{it}$
- Shocks to global volatility ($\Delta \sigma_w$) induce country specific volatility changes
- In high β countries volatility increase relative to low β countries, by $(\beta^H - \beta^L) \Delta \sigma_w$
- Why not focus on relative volatility (i.e. $\sigma_i - \sigma_w$) directly?
Uncertainty betas v/s relative volatility

- The paper estimates $\sigma_{it} = \beta_i \sigma_{wt} + \varepsilon_{it}$
- Shocks to global volatility ($\Delta \sigma_w$) induce country specific volatility changes
- In high β countries volatility increase relative to low β countries, by $(\beta^H - \beta^L) \Delta \sigma_w$
- Why not focus on relative volatility (i.e. $\sigma_i - \sigma_w$) directly? (except for the fact that uncertainty betas sounds cool)
Advantages of using relative volatility

- If idiosyncratic variations in volatility (i.e. ε_{it}) are large, empirical exercise misses some informative variation.
Advantages of using relative volatility

• If idiosyncratic variations in volatility (i.e. ε_{it}) are large, empirical exercise misses some informative variation

• Might argue β's pick up “exogenous" variation in volatility; not necessarily the case as some relative volatility is incorporated in $(\beta^H - \beta^L) \Delta \sigma_w$

• Asian countries during the 1997 crisis are high β: most likely causation runs from idiosyncratic Asian volatility to world volatility.
Figure 2: Uncertainty Betas—Country-level volatilities are obtained at the quarterly frequency as the standard deviations of daily real stock market returns over one quarter. Likewise, a measure of aggregate volatility is obtained from the MSCI world stock market index. For each country i, uncertainty betas are then obtained by regressing that country i’s stock market volatility on the world stock market volatility. The uncertainty betas, denoted β_i, are obtained on rolling window regressions of 20 quarters. The subscript t on β_i indicates that it is obtained on a time window that ends at date t, e.g. from period $t-20$ to t.
Suggestion

- Repeat VAR exercise using shocks to relative uncertainty
- Should be easy enough to do
- Interesting regardless of the results
Main finding

- In response to an increase in domestic volatility:
 - Foreigners sell domestic assets
 - Domestic agents sell foreign assets
Main finding

- In response to an increase in domestic volatility:
 - Foreigners sell domestic assets
 - Domestic agents sell foreign assets
 - Large and significant decline in gross positions
 - Small (non significant) net accumulation of FA by domestic
On the theory

- Why is there a decline in gross position?
- Model suggests not uncertainty per se driving portfolio shifts; rather asset taxes that respond to uncertainty
- Key element: domestic residents not subject to taxes, but foreign agents are
On the theory

- Why is there a decline in gross position?
- Model suggests not uncertainty per se driving portfolio shifts; rather asset taxes that respond to uncertainty
- Key element: domestic residents not subject to taxes, but foreign agents are
- Volatility high -> domestic taxes high -> foreign agents sell domestic assets
- Since these assets are now cheap and not taxed for domestic agents, they purchase them and sell foreign
On the theory

- Why is there a decline in gross position?
- Model suggests not uncertainty per se driving portfolio shifts; rather asset taxes that respond to uncertainty
- Key element: domestic residents not subject to taxes, but foreign agents are
- Volatility high -> domestic taxes high -> foreign agents sell domestic assets
- Since these assets are now cheap and not taxed for domestic agents, they purchase them and sell foreign
- Decline in gross position
An alternative model?

- Households exposed to labor income risk, correlated with domestic asset risk; can buy domestic safe asset (bond), domestic and foreign risky asset

- Domestic risk increase -> foreigners reduce their share of domestic assets (immediate)

- If increase in labor income risk large enough, domestic agents reduce their share of foreign asset (in favour of safe): want reduce overall risk exposure

- Reduction in gross positions

- For foreign agents driven by reallocation within the risky portfolio, for domestic driven by flight to safety
An alternative model?

- Households exposed to labor income risk, correlated with domestic asset risk; can buy domestic safe asset (bond), domestic and foreign risky asset
- Domestic risk increase -> foreigners reduce their share of domestic assets (immediate)
- If increase in labor income risk large enough, domestic agents reduce their share of foreign asset (in favour of safe): want reduce overall risk exposure
- Reduction in gross positions
An alternative model?

- Households exposed to labor income risk, correlated with domestic asset risk; can buy domestic safe asset (bond), domestic and foreign risky asset
- Domestic risk increase -> foreigners reduce their share of domestic assets (immediate)
- If increase in labor income risk large enough, domestic agents reduce their share of foreign asset (in favour of safe): want reduce overall risk exposure
- Reduction in gross positions
- For foreign agents driven by reallocation within the risky portfolio, for domestic driven by flight to safety
Why the alternative model?

- Complementary story for why both countries reduce their exposure to foreign assets
- More direct link between volatility and portfolio decision
On volatility and net positions

- Fogli and Perri (2014) focus on relation between relative volatility and net positions (imbalances)
- Main finding is that increase in relative volatility strongly associated with accumulation of foreign assets
Relative volatility and external imbalances
Relative volatility and external imbalances

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable is Net Foreign Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of GDP Growth</td>
<td>19.70*** 16.94*** 16.89*** 17.36*** 14.59** 15.20*** 15.56***</td>
</tr>
<tr>
<td></td>
<td>(3.74) (4.91) (4.58) (5.87) (5.11) (4.97) (4.83)</td>
</tr>
<tr>
<td>Average GDP Growth</td>
<td>-11.78 -10.82 -12.08 -15.78* -10.44 -15.07 -22.90**</td>
</tr>
<tr>
<td></td>
<td>(7.32) (7.34) (7.54) (8.22) (8.53) (9.22) (9.52)</td>
</tr>
<tr>
<td>Average Inflation</td>
<td>1.33 3.04 3.04 2.06 2.95 2.30</td>
</tr>
<tr>
<td></td>
<td>(1.64) (2.06) (2.16) (2.22) (2.27) (2.55)</td>
</tr>
<tr>
<td>Volatility of Inflation</td>
<td>-0.07 -1.63 -1.19 -0.81 -1.43 -0.46</td>
</tr>
<tr>
<td></td>
<td>(3.74) (3.61) (3.39) (3.38) (3.12) (3.29)</td>
</tr>
<tr>
<td>Volatility of Govm. Cons. Growth</td>
<td>-3.48 -6.17 -6.35 -5.01 -5.89</td>
</tr>
<tr>
<td></td>
<td>(4.21) (4.77) (4.94) (4.85) (5.46)</td>
</tr>
<tr>
<td>Financial Openness 1</td>
<td>0.74 1.40 0.44 1.13</td>
</tr>
<tr>
<td></td>
<td>(3.81) (4.20) (4.56) (4.95)</td>
</tr>
<tr>
<td>Financial Openness 2</td>
<td>2.85 1.66 1.71 2.15</td>
</tr>
<tr>
<td></td>
<td>(4.64) (4.04) (3.95) (3.93)</td>
</tr>
<tr>
<td>Trade Openness</td>
<td>-6.69 -5.91 -5.52</td>
</tr>
<tr>
<td></td>
<td>(7.01) (6.37) (6.57)</td>
</tr>
<tr>
<td>Share Young</td>
<td>1.25 1.36</td>
</tr>
<tr>
<td></td>
<td>(1.27) (1.30)</td>
</tr>
<tr>
<td>Share Old</td>
<td>-2.24 -2.04</td>
</tr>
<tr>
<td></td>
<td>(2.95) (3.01)</td>
</tr>
<tr>
<td>N</td>
<td>647 647 647 631 618 618 618</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.820 0.824 0.824 0.828 0.806 0.814 0.819</td>
</tr>
</tbody>
</table>

All regressions include country and year fixed effects. Robust standard errors, clustered at the country level, in parentheses

* $p < 0.10, ** p < 0.05, *** p < 0.01$
What explains this relationship?

- Increase in domestic risk/volatility
- Domestic agents increase precautionary saving (more patient)
- Because domestic capital is more risky and has decreasing returns
 -> accumulate more foreign assets
Model’s impulse response to a volatility shock

- In simple (only net position), calibrated open macro business cycle model response quantitatively consistent with data
Why stronger effect of volatility on net positions?

- Different measure of volatility (GDP based v/s stock market based) possibly more connected with precautionary motive
Conclusions

• Interesting and clear paper
• Contributes to growing literature showing that risk/uncertainty/volatility important determinant of allocation of resources, especially in open, integrated economies