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Stationary equilibria in economies with Idiosyncratic Risk and Incomplete Markets

We are now at the point in which we can plug in our generic individual income fluctuation problem

into a general equilibrium framework. The payoff from this is double: first we can analyze aggregate

variables such as prices, aggregate employment, business cycles in a truly micro-founded fashion.

For example recently some researchers (e.g. Guerrieri and Lorenzoni, 2011) have conjectured that

the 2008 crisis has been caused by a tightening of the borrowing constraints (due, possibly, to a fall

in home prices). This type of model could be used to analyze the macroeconomic implication of such

an event. The second advantage of such a model is that we’ll be able to understand distributions

and how, for example, they evolve in response to different type of shocks. The questions we could

ask are:

1. How much of the observed wealth inequality can one explain through uninsurable earnings

variation across agents?

2. What is the fraction of aggregate savings due to the precautionary motive? (These two ques-

tions are analyzed in the paper by Ayiagari)

3. What is the impact of individual risk on the interest rate (This question has been analyzed in

the paper by Huggett)

4. What are the welfare consequence of an increase in earnings risk?

5. Who gains and who loses from an increase in sales taxes and a reduction in capital taxes? How

do they affect prices?

The economies we will use are constructed around three building blocks: 1) the “income-

fluctuation problem” which generate an asset supply , 2) A demand for assets which can be generated

in various ways (firms, government etc.) 3) the equilibrium of the asset market. Two key references

are the paper by M. Huggett (1993) and the paper by R. Ayiagari (1994) most useful in its working

paper version posted on the class page. Also see Ljunqvist Sargent chapter 17 and the Rios-Rull

chapter on the Cooley volume. In this note we will focus on stationary equilibria, i.e. on equilibria

in which prices are constant through time. In the next lecture we will deal with the case of time or

state varying prices.

1 Stationary Equilibrium

We will first define a stationary equilibrium through the concept of Recursive Competitive Equi-

librium (RCE). Most of the requirement of this RCE definition will be standard (agents optimize,

markets clear). However, in the stationary equilibrium of this economy we require the distribution

of agents across states to be invariant. The probability measure will permanently reproduce itself.
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1.1 Some Mathematical Preliminaries

The individual is characterized by the pair (a, ε) –the individual states. The aggregate state of the

economy is the distribution of agents across states, i.e. λ (a, ε). We would like this object to be a

probability measure, so we need to define an appropriate mathematical structure. Let amax be the

maximum asset holding in the economy, and for now assume that such upper bound exists. Define

the compact set A ≡ [−ā, amax] of possible asset holdings and the countable set E be the set of all

possible individual shocks. Define the Cartesian product as the state space, S ≡ A× E with Borel

σ algebra B and typical subset (A× E). The space (S,S) is a measurable space, and for any set

S ∈ B, λ(S) is the measure of agents in the set S. Finally let Λ denote the set of all probability

measures over (S,B).

How can we characterize the way individuals transit across states over time? i.e. how do we

obtain next period distribution, given this period distribution? We need a transition function. Define

Q ((a, ε) ,A× E) as the probability that an individual with current state (a, ε) transits to the set

A× E next period, formally Q : S × B → [0, 1], and

Q ((a, ε) ,A× E) =
∑
ε′∈E

I {a′(a, ε) ∈ A}π(ε′, ε) (1)

where I is the indicator function, a′(a, ε) is the optimal saving policy and π(ε′, ε) is the transition

probability function i.e. the probability of having shock ε′ tomorrow given that the shock today is

ε. Then Q is our transition function and the associated T ∗ operator yields

λn+1 (A× E) = T ∗(λn) =

∫
A×E

Q ((a, ε) ,A× E) dλn (a, ε) . (2)

Let us now re-state the problem of the individual in recursive form,

v(a, ε;λ) = max
c,a′

{
u(c) + β

∑
ε′∈E

v(a′, ε′;λ′)π(ε′, ε)

}
(3)

s.t.

c+ a′ = (1 + r (λ)) a+ ε

a′ ≥ −ā

where, for clarity, we have made explicit the dependence of prices from the distribution of agents

(although, strictly speaking, it is redundant in a stationary environment). We are now ready to

proceed to the definition of equilibrium.

1.2 Definition of Stationary RCE

A stationary recursive competitive equilibrium is a value function v : S → R+; policy func-

tions for the household a′ : S → R, and c : S → R+; a demand for savings K(r), an interest rate r ;

and a stationary measure λ∗ ∈ Λ such that:

• given r , the policy functions a′ and c solve the household’s problem (3) and v is the associated

value function
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• given r the demand for saving result from the optimization of the relevant agents (households,

govt, rest of the world)

• the asset market clears: K(r) =
∫
A×E a

′(a, ε)dλ∗(a, ε),

• for all (A× E) ∈ B, the invariant probability measure λ∗ satisfies

λ∗ (A× E) =

∫
A×E

Q ((a, ε) ,A× E) dλ∗ (a, ε) ,

where Q is the transition function defined in (1) .

1.3 Existence and Uniqueness of the Stationary Equilibrium

Characterizing the conditions under which an equilibrium exists and is unique boils down, like in

every general equilibrium model, to show that the excess demand function (of the price) in each

market is continuous, strictly monotone and intersects “zero”. So in this context if we prove that

the equilibrium in the asset market exists and is unique, we are done. If we could show that the

aggregate saving supply function

A(r) =

∫
A×E

a′(a, ε; r)dλ∗(a, ε; r)

is continuous in r and crosses the aggregate saving demand function, then we would prove existence.

If, in addition, we can show that A (r) is strictly increasing (i.e. in the aggregate the substitution

effect outweighs the income effect), we would prove uniqueness. We proceed in steps.

Limits– Suppose first (1 + r)β = 1, i.e. r = 1
β − 1, then we know by the martingale converge

theorem that for each individual its supply of assets goes to infinity so the same happens for the

aggregate supply of assets. Strictly speaking in this case there is no stationary distribution hence

A( 1
β −1) is not well defined. Ayiagari argues, invoking a continuity argument, that limr→ 1

β−1
A(r) =

+∞. For r = −1 the individual would like to borrow until the limit, as repayment is costless, so

A(−1)→ −ā.1 Note that In Aiyagari’s working paper a different borrowing constraint is considered,

i.e. the

a′ ≥

{
−ā if r ≤ 0

−min( εmin

r , ā) if r > 0

which is the more relaxed borrowing constraint which is consistent with almost sure repayment.

With either borrowing constraint we have the result that A(−1) → −ā. Given this result if we

can prove continuity of A(r) and K(r) we have shown that any model in which K(−1) − ā < 0

and limr→ 1
β−1

K(r) > −∞ has at least a stationary equilibrium. Notice that the condition above

guarantees that A(−1) +K(−1) < 0 and that

lim
r→ 1

β−1
A(r) +K(r) > 0

1For values of the interest rate -1 < r < 0, the agent in general will stay away from the borrowing constraint for

precautionary reasons.
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A(r),K(r)

rr

−ā

1
β − 1

−1

−δ

K(r)

A(r)

so that there exists at least an interest rate r for which the excess demand for saving A(r)+K(r)

is 0. For example in the special case of the Huggett model K(r) = 0 so that if you prove continuity

of A(r) you are done. Another special interesting case is the one presented by Aiyagari in which

the demand for capital comes from competitive firms that hire capital and labor to solve the static

profit maximization

max
K,L

KαL1−α + (1− δ)K − wL− (1 + r)K

where w is the wage and r is the interest rate. In this case the demand for capital is given by the

following expression

K(r) =

(
αL1−α

δ + r

) 1
1−α

which tends to +∞ as r goes to −δ and goes to 0 as r goes to∞.Also in this case it is easy to verify

that continuity of A(r) is sufficient to show existence.

Continuity wrt r– Before we discuss continuity we need to discuss existence of A(r) i.e. we

have to establish that a stationary distribution λ∗ exist. In particular we have to establish that the

operator T ∗r : Λ→ Λ defined by

(T ∗r (λ)) (A× E) =

∫
Qr((a, ε), (A× E))dλ (4)

has a unique fixed point (that T ∗r maps Λ into itself follows from SLP, Theorem 8.2). To show this

Aiyagari (in the working paper version, and quite loosely described) draws on a theorem in SLP and
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Huggett on a similar theorem due to Hopenhayn and Prescott (1992). In both theorems the key

condition is a monotone mixing condition that requires a positive probability to go from the highest

asset level amax to a intermediate asset level in N periods and an evenly high probability to go from

−ā assets to an intermediate asset level also in N periods. More precisely stated, the theorem by

Hopenhayn and Prescott states the following. Define the order “ ≥ ” on S as

s ≥ s′ iff [(s1 ≥ s′1 and s2 = s′2) or (s′ = c = (−ā, ε1)) or (s = d = (amax, εN )) (5)

Under this order it is easy to show that (S,≥) is an ordered space, S together with the Euclidean

metric is a compact metric space, ≥ is a closed order, c ∈ S and d ∈ S are the smallest and the

largest elements in S (under order ≥) and (S,B(S)) is a measurable space. Then we have (see

Hopenhayn and Prescott (1992), Theorem 2)

Proposition 1 If

1. Qr is a transition function

2. Qr is increasing

3. There exists s∗ ∈ S, δ > 0 and N such that

PN (d, {s : s ≤ s∗}) > δ and PN (c, {s : s ≥ s∗}) > δ (6)

Then the operator T ∗r has a unique fixed point λr and for all λ0 ∈ Λ the sequence of measures

defined by

λn = (T ∗)
n
λ0 (7)

converges weakly to λr

Here PN{s,S) is the probability of going from state s to set S in N steps. Instead of proving

this result (which turns out to be quite tough) we will explain the assumptions, heuristically verify

them and discuss what the theorem delivers for us. Assumption 1 requires that Qr is in fact a

transition function, i.e. Qr(s, .) is a probability measure on (S,B(S)) for all s ∈ S and Qr(.,S) is a

B(S)-measurable function for all S ∈ B(S). Given that a′(a, y) is a continuous function, the proof

of this is not too hard. The assumption that Qr is increasing means that for any nondecreasing

function f : S → R we have that

(Tf) (s) =

∫
f(s′)Qr(s, ds

′) (8)

is also nondecreasing. The proof that Qr satisfies monotonicity is straightforward, given that a′(a, y)

is increasing in both its arguments2, so that bigger s’s make Qr(s, .) put more probability mass on

bigger s′. Together with f being nondecreasing the result follows. Finally, why is the monotone

mixing condition 3 satisfied? In general the monotone mixing condition guarantees that if there is,

2For a′(a, ε) to be increasing in y we need to assume that the exogenous Markov chain does not feature negatively

serially correlated income.
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say, a mass 1 of households either at the top or at the bottom of the state space, in a finite number

of steps a positive fraction of this mass will be away from the top or the bottom. Loosely speaking,

suppose the household starts from (ā, εmax) and receives a long stream of the worse realization of the

shock εmin. Then, she will keep decumulating wealth until she reaches some neighborhood of the

lower bound. The reason for decumulation is that the household knows that this income realization

is well below average, his permanent income is higher and consumption is dictated by permanent

income. Suppose now that the household starts with (−ā, εmin) and receives a long stream of the

best shock εmax. Then, she will accumulate wealth until she reaches some neighborhood of the upper

bound. The reason for accumulation is similar: the household realizes that this good realization is

“transitory”and her expected income is below the current income, so she saves a fraction of these

lucky draws.

The conclusion of the theorem then assures the existence of a unique invariant measure λr which

can be found by iterating on the operator T ∗r . Convergence is in the weak sense, that is, a sequence

of measures {λn} converges weakly to λr if for every continuous and bounded real-valued function

f on S we have

lim
n→∞

∫
f(s)dλn =

∫
f(s)dλr (9)

The argument in the preceding section demonstrated that the function Ea(r) is well-defined on

r ∈ [−1, 1
β − 1). Since a′r(a, y) is a continuous function jointly in (r, a), see SLP, Theorem 3.8 and

λr is continuous in r (in the sense of weak convergence), see SLP, Theorem 12.13, the function

Ea(r) is a continuous function of r on [−1, 1
β − 1). Note that the real crux of the argument is in

establishing an upper bound of the state space for assets, as S needs to be compact for the theorem

by Hopenhayn and Prescott to work. To bound the state space an interest rate r < 1
β − 1 is needed,

as we have discussed in previous classes.

Monotonicity– There are no results on the monotonicity of the aggregate supply of capital

with respect to r, so uniqueness is never guaranteed. One can use the computer to plot aggregate

supply as a function of the interest rate on a fine grid for a reasonably large range of values of r to

check its slope. But notice that even if the aggregate supply of capital is monotone there could be

multiple equilibria if the demand for capital is increasing or non monotone. Sargent and Ljunqvist

in section 17.11 describe an economy with seignorage in which typically there are multiple stationary

equilibria.

2 An Algorithm for the Computation of the Equilibrium

How do we compute, in practice, this equilibrium? The algorithm that can be used is a fixed point

algorithm over the interest rate. Here we give an example of this algorithm for the Ayiagari economy

1. Fix an initial guess for the interest rate r0 ∈
(
−δ, 1

β − 1
)

, where these bounds follow from

our previous discussion. The interest rate r0 is our first candidate for the equilibrium (the

superscript denotes the iteration number).
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2. Given the interest rate r0, obtain the wage rate w(r0) using the CRS property of the production

function (recall that L is given exogenously with inelastic labor supply).

3. Given prices
(
r0, w(r0)

)
, you can now solve the dynamic programming problem of the agent

(3) to obtain a′(a, ε; r0) and c(a, ε; r0). Notice that these functions will be in general non linear

functions of the states hence you will have to find suitable approximations for those (either

polynomial or piece-wise linear). You’ll learn about solving these problems numerically later

during your PhD, for now keep in mind that due to recent events in computation (in particular

the so-called endogenous grid method) these non-linear, global optimization problems can

be solved very fast.

4. Given the policy function a′(a, ε; r0) and the Markov transition over productivity shocks

π (ε′, ε), we can construct the transition function Q
(
r0
)

and obtain the fixed point distri-

bution λr0 , conditional on the candidate interest rate r0.

(a) The easiest method to implement this step, in practice, is to approximate a distribution

λr0 with a M dimensional column vector and the transition function Q
(
r0
)

with a M ∗M
matrix QMr0 which represents a linear map from the space of M dimensional vectors into

itself so that given a distribution λr0 today the distribution tomorrow is given by QMr0

λr0 . After appropriately constructing the matrix QMr0 using the numerically computed

decision rules together with the Markov chain approximation for the stochastic process

the stationary distribution λ∗r0 can be simply computed by finding the, appropriately

normalized, eigenvector associated to the unitary eigenvalue of QMr0 .

5. Compute the aggregate demand of capital K
(
r0
)

from the optimal choice of the firm who

takes as given r0, i.e.

K(r0) = F−1k (r0 + δ)

6. Compute the integral

A
(
r0
)

=

∫
A×E

a′(a, ε; r0)dλ∗r0

which gives the aggregate supply of assets. .

7. Compare K
(
r0
)

with A
(
r0
)

to verify the asset market clearing condition. If A
(
r0
)
>

(<)K
(
r0
)
, then the next guess of the interest rate should be lower (higher), i.e. r1 < (>) r0.

To obtain the new candidate r1 a good choice is, for example,

r1 =
1

2

{
r0 +

[
FK(A

(
r0
)
, H)− δ

]}
8. Update your guess to r1 and go back to step 1). Keep iterating until one reaches convergence

of the interest rate, i.e. until

|rn+1 − rn| < ε,

for ε small.
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9. All the equilibrium statistics of interest, like aggregate savings, inequality measures, etc. can

be then easily computed using the stationary distribution.

3 Applications

In class we will discuss some simple applications of the Aiyagari framework. In particular we will

discuss how changes in income risk or changes in the the borrowing constraints affect individual

decision rules, aggregate supply of credit, equilibrium interest rates and the distribution of wealth.

We will also analyze how the framework changes if one assumes the existence of insurance markets

against idiosyncratic income shocks.
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