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Lecture 6. Income fluctuations problems, II

In this lecture we want to understand more the dynamics of individual wealth and consumption in

income fluctuations problems. In particular we are interested in understanding if the endogenous state

space for assets is compact, i.e. there exists an upper bound for assets which is finite or whether there

is a tendency for each individual to accumulate assets. This is an important piece for establishing the

existence of a stationary equilibrium in economies populated by many agents who face idiosyncratic

shocks. As an example think back of the special case of PIH with i.i.d. income. and with β(1+ r) = 1. In

that case the wealth of an individual which starts with 0 wealth follows a random walk without drift hence

it has zero expected value but is unbounded. It follows that the distribution of wealth in an economy with

a continuum of agents is not stationary but, since it has 0 mean, it is consistent with general equilibrium.

1 The general problem

We are now going to back to our general problem

max
{ct,at+1}∞

t=0

E0

∞∑
t=0

βtu (ct)

s.t.

ct + at+1 = (1 + r) at + yt

at+1 ≥ −ā

with u′ > 0, u′′ < 0, (1 + r) given and {yt}∞t=0 some general stochastic/deterministic process.

The first order necessary condition for optimality is

u′ (ct) = β (1 + r)Et [u′ (ct+1)] + λt, (1)

where λt > 0 is the Lagrange multiplier on the borrowing constraint. Condition (1) implies the Euler

equation

u′ (ct) ≥ β (1 + r)Et [u′ (ct+1)] . (2)

The value for the interest rate is always exogenously given. In general there are going to be two

forces shaping asset accumulation. The first is the effective rate of time preference summarized by the

term β(1 + r). Clearly the higher β(1 + r) the more agents like future conumption the more they’ll

want to accumulate wealth. The second force is risk. Agents save and accumulate assets to shield their
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consumption from bad income realizations, so the higher the risk and the the higher is the prudence of

agents, the more agents will want to save.

2 Case T finite

If T is finite, obviously ct and at remain bounded, regardless of risk. This is because the effective rate of

time preference is set to 0 for ant t > T. In general equilibrium, interest rates may exceed the subjective

time discount factor, depending on the age profile of labor income. General equilibrium models with

many overlapping generations, each of which faces a income fluctuation problem with finite horizon, have

become popular tools to analyze policy reforms, from social security reform to fundamental tax reform.

Solving the income fluctuation problem in finite horizon numerically is usually fairly easy as straight

backward induction can be used.

3 Case T infinite

If T is infinity then the convergence properties of the consumption sequence will depend on the effective

rate of time preference β (1 + r) . We’ll examine three separate cases: β (1 + r) above, equal to or below

one. Also in this case the nature of risk is going to be important. So we first analyze the case of

deterministic income fluctuations and then move to stochastic income fluctuations. The cases we are

going to analyze with a brief preview of the results are in table 1 below:

Table 1. Wealth dynamics in income fluctuation problems

Deterministic Income Stochastic Income

Wealth dynamics

(1 + r)β > 1 Diverging Diverging

(1 + r)β = 1 Stationary Diverging

(1 + r)β < 1 Stationary Ambiguous

3.1 Deterministic Income Fluctuations

We will focus throughout on the case in which at any point in time net present discounted value of income

from that point on is finite i.e.
∞∑
j=0

yt+j

(1 + r)j
<∞ for every t (3)

a special case which obviously satisfies this assumption is a constant income y. In the problem set you

have to analyze a case in which this assumption is not satisfied.
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• Case β(1 + r) > 1: Let’s first define the quantity Mt = u′(ct)(β(1 + r))t. Without uncertainty the

Euler equation (2) implies Mt ≥Mt+1 > 0, which implies that Mt is bounded. Since limt→∞(β(1+

r))t = ∞, it must be that lim t→∞u
′(ct) = 0, and under regularity conditions for utitility (i.e.

Inada) lim t→∞ct = ∞, i.e. consumption is unbounded. Does unbounded consumption imply

unbounded assets? It does but one needs to show it. The first step involves the ability of writing

the intertemporal budget constraint at every period as

at(1 + r) +

∞∑
j=0

yt+j

(1 + r)j
≥

∞∑
j=0

ct+j

(1 + r)j

which can be done because at+1 ≥ −ā. The second step involves noticing that since ct is un-

bounded then

∞∑
j=0

ct+j

(1+r)j is unbounded, but

∞∑
j=0

yt+j

(1+r)j is bounded by assumption, hence at must be

unbounded.

• Case β (1 + r) = 1: From the Euler Equation, u′ (ct) ≥ u′ (ct+1). Households choose perfectly

smooth consumption ct+1 = ct when the debt constraint is not binding, otherwise ct+1 > ct, so

consumption is a nondecreasing sequence. One can prove that the effect of the borrowing constraint

can last until a given time τ and vanishes thereafter. In particular define

xt =
r

1 + r

∑
j=0

(
1

1 + r

)j

yt+j

as the annuity value of the of discounted present value of future income then we have

lim
t→∞

ct = sup
t
xt ≡ x̄

where (3) guarantees x̄ exists. So consumption might be increasing for a while due to borrowing

constraint but eventually will be converging to x̄. Note that if x̄ is reached at a date τ finite

consumption will be constant for all τ > t. So if consumption converge to a finite value then assets,

using again the budget constraint and 3, converge as well. See LS (16.3.1) for a proof of this result.

In class we’ll discuss a couple of simple examples illustrating this case: one in which the income

process is given by yt = {ȳ − 1/t}∞t=1 and one in which it is given yt is non monotone sequence.

• Case β (1 + r) < 1. It is fairly intuitive that in this case the consumption and asset sequences

will converge as consumers value more early consumption more than late one. To see it more

precisely we’ll consider the simple case where the endowment sequence is constant at y > 0 and in

which ā = 0. Let’s write the above problem in DP form with cash-in-hand as a state variable, i.e.
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x ≡ (1 + r) a+ y. Then:

V (x) = max
c,a′
{u (c) + βV (x′)}

s.t.

x′ = (1 + r) (x− c) + y

a′ = x− c

a′ ≥ 0

From the envelope condition of the above problem,

uc (c(x)) = Vx (x) ,

which differentiated w.r.t. to x gives

ucc (c(x))
dc(x)

dx
= Vxx (x) =⇒ dc

dx
=
Vxx (x)

ucc (c)
> 0, (4)

thus consumption is increasing in cash-in-hand under strict concavity and differentiability of V.

Next, we want to show that, as long as the borrowing constraint is not binding, cash in hand

decreases over time, i.e. if a′ (x) > 0 then x′ < x. When a′ (x) > 0, the Euler Equation holds with

equality, and:

uc (c) = β (1 + r)Vx (x′)

Vx (x) = β (1 + r)Vx (x′) < Vx (x′) =⇒ x′ < x,

where the second line follows from the envelope condition, from β (1 + r) < 1 and from the concavity

of V. Therefore, if we start from a positive level of assets a0, cash in hand will fall over time and

so will consumption because of (4). Next we show that in finite time cash in hand converges to

y (i.e. assets converge to 0). Suppose not, i.e. that cash in hand converges to a level x̄ > y so

that a(xt) > 0 for all xt. In this case the Euler equation holds with equality for all future periods

starting from any date t hence for any t we can write

0 < u′(ct)

= lim
j→∞

(β(1 + r))ju′(c(xt+j))

≤ lim
j→∞

(β(1 + r))ju′(c(y)) = 0

which is a contradiction. Note that the inequality in the first row simply follows from the definition of

marginal utility, the equality in the second row is derived iterating on the Euler equation and exploiting
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the fact that it holds with equality for all dates and the last inequality follows from the fact that xt+j > y

for all t+ j and that consumption in increasing in cash in hand. Intuitively when β(1 + r) < 1 the value

of at as t gets large goes to 0 and hance it will never be optimal for an agent to keep positive at for large

enough t.

Finally, we want to show that once x = y (all assets have been depleted) then a′ (x = y) = 0 and c (x) =

y, i.e. in the limit as assets get depleted and reach zero (and cash in hand equals y), the consumption

sequence converges to the constant endowment stream. We prove it by contradiction. Suppose that

a′ (y) > 0. Then, the FOC holds with equality and

uc (c(y)) = β (1 + r)Vx (x′)

Vx (y) = β (1 + r)Vx ((1 + r) a′ + y) < Vx ((1 + r) a′ + y) < Vx (y) ,

where the second line uses the envelope condition, the fact that β (1 + r) < 1 and the strict concavity of

the value function. The second line contains the contradiction.

We conclude that, in the deterministic case, the desire to save is increasing in patience (β) and the

interest rate (r) . When β (1 + r) > 1 assets and consumption diverge to infinity. When β(1 + r) = 1

assets and consumption remain bounded and when β(1 + r) < 1 assets go to 0.

3.2 Stochastic Income Fluctuations

We now turn to the stochastic case. Here there is an additional motive for saving, the precautionary

motive, due either to prudence or to the interaction between (i.e., aversion to consumption fluctuations)

and the borrowing constraint. It is then intuitive that the condition under which {ct} converges will be

more stringent: we will need β(1 + r) < 1.

A useful supermartingale theorem– Multiply both sides of (2) by βt (1 + r)
t

and define Mt ≡

βt (1 + r)
t
u′ (ct) > 0. Then equation (2) can be written as

Mt ≥ EtMt+1.

which asserts that Mt follows a supermartingale. By the supermartingale converge theorem (Doob, 1995),

this (non-negative) stochastic process converges almost surely to a non-negative random variable M̄ , i.e.,

lim
t→∞

Mt = M̄ <∞ (5)

in other words the limit is finite.

Case β (1 + r) > 1: According to the convergence theorem above, [β (1 + r)]
t
u′ (ct) has a finite limit.

Since [β (1 + r)]
t → ∞, then marginal utility u′ (ct) can only converge to 0 and, given that u′ > 0,
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ct →∞. Since debt and income are bounded, ct →∞ can only be achieved with at →∞, hence there is

no upper bound in the asset space. This is the same result we found for the certainty case.

Case β (1 + r) = 1: In this case the most general result is the one provided by Chamberlain and

Wilson (2000) who show, using a bounded utility function, that if the process for income is sufficiently

volatile consumption and assets will diverge. To see a formal statement of their result see LS, section

16.6. In the special case of i.i.d. income process we can prove the result directly. When the income

process is i.i.d. we can use the cash in hand DP representation of the consumer problem and then, using

the Envelope condition into the Euler Equation we get

Vx (xt) ≥ Et [Vx (xt+1)] ,

therefore even the derivative of the value function is a super martingale and converges to a non-negative

random variable. Suppose this limit is strictly positive, then xt → x̄ finite. But remember that we showed

that consumption is a strictly increasing function of cash in hand x (our proof was for the deterministic

case but it is straightforward to extend it to the stochastic case). This implies that if x converges to a

finite value then also c(x) converges to a finite value. But now consider the budget constraint

x′ − (1 + r)(x− c) = y′

we have just shown that the left hand side of the budget constraint converges while the right hand side

does not. Hence, the limit cannot be strictly positive and Vx(xt)→ 0 which implies that xt converges to

infinity (why is it? ). So the convergence result of the deterministic case does not hold in the stochastic

case. We can give a some intuition for this result if we assume that u′′′ > 0. From the Euler Equation

u′ (ct) ≥ Et [u′ (ct+1)] .

From convexity of the marginal utility, by Jensen’s inequality

u′ (ct) ≥ Et [u′ (ct+1)] > u′ (Et (ct+1)) .

By concavity, we have that Et (ct+1) > ct, so consumption will always tend to ratchet upward over time.

The reason for this is exactly the same reason that generates precautionary saving. To see it consider

an agent which consumes 1 with certainty today and tomorrow so that its Euler equation holds exactly.

Consider now giving the same agent consumption tomorrow equal to 0.9 with 50% probability and 1.1

with 50% probability. If marginal utility is convex the increase in marginal utility stemming from the 0.9

state is larger than the fall in marginal utility stemming from the 1.1. state so that its expected future

marginal utility will increase calling for a transfer of resources from today to tomorrow, i.e. of growing

consumption even if β(1 + r) = 1, in other words risk acts as an increase in the rate of time preference β.
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Case β (1 + r) < 1. This case is ambiguous. Under additional restriction on utility and on the income

process we can prove that the assets are bounded but one cannot prove it in general. Consider the case

of i.i.d. shocks. Let x be cash in hand. From the Euler Equation:

uc (c (x)) = β(1 + r)E [uc (c (x′))] = β(1 + r)
E [uc (c (x′))]

uc (c (x′max(x)))
uc (c (x′max(x))) , (6)

where x′max(x) = (1 + r)(x− c(x)) + ymax is the maximum realization of cash in hand next period, given

that todays’ cash in hand is x. Suppose that the limit

lim
x→∞

E [uc (c (x′))]

uc (c (x′max(x)))
= 1. (7)

Then, for x large enough, since β (1 + r) < 1, the Euler Equation (6) yields

uc (c (x)) = β(1 + r)uc (c (x′max(x))) < uc (c (x′max(x))) .

Concavity of u implies that

c (x′max(x)) < c (x)⇒ x′max (x) < x

thanks to the fact that c′ (x) > 0. And we would be done, because we have demonstrated that cash

in hand is bounded. Graphically we’d have established that decision rules look like the one depicted in

figure 1. Notice that condition (7) states that as cash in hand increases variation in marginal utility goes

to 0 i.e. marginal utility approaches linearity. In this case the precautionary saving motive goes to 0 and

the fact that β(1 + r) < 1 will bound asset accumulation.

Therefore, we only need to establish under which condition the limit in (7) holds. To establish this

first notice that
uc(c(x

′
max(x)− (ymax − ymin)))

uc (c (x′max(x)))
>

E [uc (c (x′))]

uc (c (x′max(x)))
> 1 (8)

where the second inequality simply follows from the fact that marginal utility and the consumption

function are increasing and the first inequality can be proven as follows

E [uc (c (x′))] ≤ uc(c(x
′
min(x)) = uc(c(x

′
min(x)) + c(x′max(x))− c(x′max(x)))

≤ uc(c(x
′
max(x))− [c(x′max(x)− c(x′min(x))])

≤ uc(c(x
′
max(x))− [ymax − ymin])

where the last line follows from

c(x′max(x))− c(x′min(x)) = x′max(x)− a(x′max(x))− (x′min(x)− a(x′min(x)))

= ymax − ymin + (a(x′min(x)− a(x′max(x)))

≤ ymax − ymin
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x

x′(x)

ymin − (1 + r)ā

x
′
max

(x)

x
′
min

(x)

45o

Figure 1: Decision rules for cash in hand, β(1 + r) < 1
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since a(x) is increasing in x (If a was not increasing in x then we can easily prove that x is bounded).

Given (8) for the limit (7) to be true we need

lim
x→∞

uc(c(x
′
max(x)− (ymax − ymin)))

uc (c (x′max(x)))
= 1

To show when is this true first note that as x −→ ∞, c(x′max(x)) −→ ∞ (this is because concavity

of utility implies that as cash in hand goes to ∞ a positive fraction of it goes to current consumption,

which thus goes to ∞ ) then use the following result. If

lim
c→∞

ucc(c)

uc(c)
= 0 (9)

i.e. if absolute risk aversion goes to 0 as consumption goes to infinity, then

lim
c→∞

uc(c−K)

uc(c)
= 1,K > 0

To prove the result simply notice that

lim
c→∞

uc(c−K)

uc(c)
= lim

c→∞

uc(c−K)− uc(c) + uc(c)

uc(c)

= 1 + lim
c→∞

∫ K

0

ucc(c− s)
uc(c)

ds

= 1− lim
c→∞

∫ K

0

−ucc(c− s)uc(c− s)
uc(c− s)uc(c)

ds

≤ 1− lim
c→∞

∫ K

0

ucc(c− s)
uc(c− s)

ds

= 1

Notice that this result can be interpreted as marginal utility being close to constant in the limit or in

other words that as individuals get rich saving an extra unit has no additional marginal benefit.

To conclude in order to show that assets are bounded one needs absolute risk aversion that goes to

0. The intuition is clear: vanishing absolute risk aversion means that the consumer is less worried about

income fluctuations as she gets rich, so she will consume more and accumulate less. Note that CRRA

utility satisfies condition (9), whereas, obviously, CARA utility does not.

Remember that for this result we require β (1 + r) < 1 and remember that condition on risk aversion

is a sufficient condition, i.e. if β(1 + r) is sufficiently low it might be the case that even with constant

absolute risk aversion the asset space is bounded. Finally, recall that this result holds for i.i.d. shocks.

Huggett (1993) generalizes this result to a 2-state Markov chain for the income process (with CRRA

utility). We conclude by summarizing our findings in:

Result : In presence of borrowing constraints and uncertain income, the condition β (1 + r) < 1 is

necessary for the optimal consumption sequence and for the asset space to be bounded. Moreover, when

β (1 + r) < 1, if income shocks are i.i.d and absolute risk-aversion goes to 0 as consumption and assets

go to infinity then the asset space is bounded.
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