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Lecture 5. Income fluctuations problems, I

Our goal is to analyze more general economies in which the representative agent construct does not

apply. In particular we will consider an economy in which agents face idiosyncratic income fluctuations

against which they can insure using only a non contingent bond. We will first focus on the solution of

the individual’s problem, given prices and then we will discuss the general equilibrium aspects. These

types of economies are often called Bewley/Ayiagari economies.

1 General Preferences and Borrowing Constraints

Our problem in its most general form is

max
{ct,at+1}Tt=0

E0

T∑
t=0

βtu (ct)

s.t.

ct + at+1 = (1 + r) at + yt

at+1 ≥ −ā

with u′ > 0, u′′ < 0, (1 + r) given and {yt}Tt=0 some general stochastic/deterministic process and T could

be either finite or infinite. How much progress we can make in characterizing the general solution of this

problem? To get warmed up with it let’s start with some special assumptions.

1.1 Infinite horizon, stochastic income, quadratic utility, no borrowing con-

straints, β(1 + r) = 1

This particular specification of the model is also known as the permanent income hypothesis (PIH), first

formalized by Modigliani and Friedman.

We abstract from borrowing constraints and we only impose a No-Ponzi scheme condition stating

that in the limit assets cannot be negative, i.e.

E0

[
lim
t→∞

(
1

1 + r

)t

at

]
≥ 0,

Quadratic utility can be written as

u (c) = b1ct −
1

2
b2ct

2,
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and we also assume that the interest rate on the one-period bond equals the inverse of the discount rate,

or β (1 + r) = 1. From the consumption Euler equation:

b1 − b2ct = β (1 + r)Et (b1 − b2ct+1)⇒ Etct+1 = ct. (1)

from which we recover the well known result (Hall, 1978) that consumption is a random-walk. Notice

that (1) implies

Etct+j = ct, for any j ≥ 0,

which is sometimes referred to as the martingale property.

Iterating forward on the budget constraint, using the martingale property and the no-Ponzi condition

we obtain

∞∑
j=0

(
1

1 + r

)j

Etct+j = (1 + r)at +
∞∑
j=0

(
1

1 + r

)j

Etyt+j

ct = rat +
r

1 + r

 ∞∑
j=0

(
1

1 + r

)j

Etyt+j

 (2)

Certainty equivalence– Notice that if one consider a different stochastic proces for {y∗t }∞t=0 , such

that Etyt+j = Ety
∗
t+j , for every t, j , then the optimal consumption does not change. Put differently, the

variance and higher moments of the income process do not matter for the determination of consumption.

This property descends from the linear-quadratic objective function. Notice that this property will also

hold in all linearized models.

Consumption change– Now let’s define permanent (per period) income Pt = rat+
r

1+r

∑∞
j=0

(
1

1+r

)j
Etyt+j

to define the innovation (i.e. the unexpected change) in permanent income, at time t as

Pt+1 − EtPt+1 = rat+1 − Et (rat+1) +
r

1 + r

∞∑
j=0

(
1

1 + r

)j

(Et+1 − Et) yt+1+j , (3)

=
r

1 + r

∞∑
j=0

(
1

1 + r

)j

(Et+1 − Et) yt+1+j ,

where we have used the law of iterated expectations Et (Et+1xt+1+j) = Etxt+1+j , and the fact that

rat+1 = Et (rat+1), since there is no uncertainty at time t about the evolution of wealth next period

From (2) , the innovation to consumption at time t+ 1 equals

ct+1 − ct = ct+1 − Etct+1 = [Pt+1 − EtPt+1] ,

∆ct+1 =
r

1 + r

∞∑
j=0

(
1

1 + r

)j

(Et+1 − Et) yt+1+j . (4)

where we have used the random walk property and equation (3) . This equation states a useful result:

Result: under the PIH, consumption changes between time t and t+ 1 is proportional to the revision

in expected earnings due to the new information accruing in that same time interval.
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1.1.1 Example with a Specific Income Process

At this point, to make further progress, we need to make some assumptions on the statistical properties

of the labor income process. Let’s assume that labor income is a simple autoregressive process

yt = ρyt−1 + εt

and let’s compute

∆ct+1 =
r

1 + r

∞∑
j=0

(
1

1 + r

)j

(Et+1 − Et) yt+1+j .

notice that

(Et+1 − Et) yt+1+j = Et+1yt+1+j − Etyt+1+j

= ρjyt+1 − ρj+1yt

= ρj(ρyt + εt+1)− ρj+1yt

= εt+1ρ
j

thus

∆ct+1 =
r

1 + r

∞∑
j=0

(
ρ

1 + r

)j

εt+1.

=
r

1 + r − ρ
εt+1

this expression is very intuitive and it tells you how much of the innovation to your income process you

are going to consume. If ρ = 1, ∆ct+1 = εt+1 that is you are going to consume it all, as you expect it to

be fully permanent. On the other hand if ρ = 0 you expect it to be temporary so you only consume its

annuity value, i.e. ∆ct+1 = r
1+r εt+1

As another example assume that the income process is the sum of two orthogonal components, a

permanent component ypt which follows a martingale, and a transitory component ut that is iid over

time:

yt = ypt + ut,

ypt = ypt−1 + vt.

(a process which is similar to this is often used in the empirical consumption literature). Using the

previous result it is immediate to show that

∆ct =
r

1 + r
ut + vt.

Hence, households adjust their consumption responding to the annuitized change in income. This

means that thew will respond only weakly to purely transitory shocks (ut), whereas they will respond
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one for one to permanent shocks (vt). Indeed, the former shocks have only a small effect on permanent

income, while the latter change permanent income one for one, by definition.

Identification of the shocks through panel data– Suppose that one has panel data on consump-

tion and income for a sample of households, i = 1, ..., N . Let vari denote the cross-sectional variance.

Then, note that

vari (∆ct) =

(
r

1 + r

)2

var (ut) + var (vt) ' var (vt) ,

vari (∆yt) = var (vt) + 2var (ut) ,

where the approximate equality holds for r small. Therefore, it is easy to see that with data on consump-

tion and income one can separately identify the variances of the underlying structural income shocks.

For example, if over a certain period of time we observe the variance of income rising, but the variance of

consumption approximately flat, the PIH model tells us that the rise in income uncertainty was mostly

transitory.

1.2 Prudence and Precautionary Savings

In this section we depart from quadratic utility and work with preferences where the marginal utility is

nonlinear in order to establish how consumption and saving react to income uncertainty. Unfortunately

departing from quadratic utility and no borrowing constraint reduces a lot our ability of obtaining ana-

lytical characterization of the consumption function (One exception that we will discuss later is the case

of exponential utility).

1.2.1 Two-period Model

Consider a simple two-period version of the income fluctuations problem discussed above

max
{c0,c1,a1}

u (c0) + βE [u (c1)]

s.t.

c0 + a1 = y0

c1 = (1 + r)a1 + ỹ1

where (y0) is given, and income next period ỹ1 is also exogenous but stochastic. If we retain the assump-

tion β (1 + r) = 1 to simplify the algebra, the Euler equation gives

u′ (y0 − a1) = E [u′ ((1 + r)a1 + ỹ1)] ,
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a1

LHS,RHS

L
H
S

=
u
′ (c

0
)

RHS = E(u′((1 + r)a1 + ỹ1)

RHS = E(u ′((1 + r)a1 + ŷ1))

which is one equation in one unknown, a1. The LHS is increasing in a1 since u′′ < 0, and the RHS

is decreasing because the sum of decreasing functions is a decreasing function, hence a∗1 is uniquely

determined (see the picture below).

Mean-preserving spread– What happens to optimal consumption at t = 0 if the uncertainty over

income next period ỹ1 rises, i.e. as future income becomes more risky? Consider a mean-preserving spread

of ỹ1. Define ε to be a random variable with zero mean and positive variance and consider ŷ1 = ỹ1+ ε.

Consier now the right hand side of the Euler equation

Eu′ ((1 + r)a1 + ỹ1 + ε) = E (Eu′ ((1 + r)a1 + ỹ1 + ε) |ỹ1) ≥ E (u′ [(E(1 + r)a1 + ỹ1 + ε) |ỹ1]) = E (u′ [E(1 + r)a1 + ỹ1])

where the first equality uses the law of iterated expectations, the weak inequality follows from the fact that

u′ is convex and from Jensen’s inequality and the last equality simply from the definition of conditional

mean and from the fact that ε has 0 mean. This shows that a mean-preserving spread of ỹ1 will increase

the value of the RHS, for all possible values of a1 i.e it will increase the marginal value of resources

tomorrow, which shifts upward the RHS, inducing a rise in a∗1 and a fall in c∗0.

Prudence– The convexity of the marginal utility (or u′′′ > 0) is called “prudence” and is a property

of preferences, like risk aversion: risk-aversion refers to the curvature of the utility function, whereas

prudence refers to the curvature of the marginal utility function.1 It can be easily seen that any utility

1Precisely, Kimball (1990) defines the index of relative prudence as the ratio − [u′′′ (c) c] /u′′ (c), so in a similar vein to

the Arrow-Pratt index of relative risk-aversion − [u′′ (c) c] /u′ (c).
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function with decreasing absolute risk aversion (DARA class) displays positive third derivative (e.g.,

CRRA utility). Intuitively, a rise in uncertainty reduces the certainty-equivalent income next period and

with DARA effectively increases the degree of risk-aversion of the agent, inducing him to save more.

Prudence is a motive for additional savings in order to take precaution against possible negative

realizations of the income shock next period. In this sense, savings induced by prudence are called

“precautionary savings” or “self-insurance”. In this simple, two-period partial equilibrium model one can

define precautionary wealth due to income uncertainty σε as the difference between the optimal asset

choice under uncertainty a∗1 and the optimal asset choice under that would arise when future income is

equal to its expcted value with probability 1 . Hence to conclude, we have:

Result: If the marginal utility is convex (u′′′ > 0), then the individual is “prudent” and a rise in future

income uncertainty leads to a rise in current savings and a decline in current consumption.

1.2.2 Multi-period case

Let’s generalize the two-period model to a multiperiod model with iid income shocks and finite-horizon.

In the multi-period case (time horizon T ), the problem of the household can be written, in recursive form,

as

V t (at, yt) = max
{ct,at+1}

u (ct) + βE
[
V t+1 (at+1, yt+1)

]
s.t.

ct + at+1 = (1 + r)at + yt

Note that when the income shocks {yt} are iid, we can define a unique state variable which is a

sufficient statistics for the household choice, “cash in hand” xt = (1 + r)at + yt since (at, yt) always enter

additively and current levels of yt do not provide any information about the future realizations of income

shocks. This leads to the simpler formulation

V t (xt) = max
{ct,xt+1}

u (ct) + βE
[
V t+1 (xt+1)

]
s.t.

xt = ct + at+1

xt+1 = (1 + r) (xt − ct) + yt+1

where the last constraint follows from the definition of cash in hand and the first constraint above:

xt+1 = (1 + r)at+1 + yt+1 = (1 + r) (xt − ct) + yt+1.
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From the FOC’s and the constraints, we obtain (with β(1 + r) = 1)

u1 (c∗t ) = E
[
V t+1
1 ((1 + r) (xt − c∗t ) + yt+1)

]
, (5)

so the precautionary saving result of the two-period model goes through as long as the derivative of

the value function V t+1
1 is convex, i.e. V111 > 0. When the time-horizon T is finite, it can be proved that

if u111 > 0, then V t
111 > 0 for all t = 0, 1, ..., T. See Sibley (1975).

1.3 Quadratic Preferences with Borrowing Constraints

Let’s go back to the quadratic preference case. So far, we have ignored the presence of borrowing

constraints. We imposed a no-Ponzi scheme condition, but we assumed implicitly it’s never binding.

How restrictive is this abstraction?

Wealth dynamics with borrowing constraints– First, note that, from the budget constraint

at+1 − at = ∆at = yt + rat − ct,

and using the optimal consumption choice in (2), we obtain

∆at = yt + rat − rat −
r

1 + r

 ∞∑
j=0

(
1

1 + r

)j

Etyt+j


= yt −

r

1 + r
yt −

r

1 + r

 ∞∑
j=1

(
1

1 + r

)j

Etyt+j


=

1

1 + r
yt −

1

1 + r

(1 + r)

∞∑
j=1

(
1

1 + r

)j

Etyt+j −
∞∑
j=1

(
1

1 + r

)j

Etyt+j


=

1

1 + r
yt −

1

1 + r

∞∑
j=1

[(
1

1 + r

)j−1

Etyt+j −
(

1

1 + r

)j

Etyt+j

]

=
1

1 + r
yt −

1

1 + r

[
Etyt+1 +

(
1

1 + r

)
Etyt+2 +

(
1

1 + r

)2

Etyt+3 + ...−
(

1

1 + r

)
Etyt+1 −

(
1

1 + r

)2

Etyt+2 − ...

]

= −
∞∑
j=1

(
1

1 + r

)j

Et∆yt+j−1.

where ∆yt = yt+1 − yt. Intuitively this equation shows that the growth of assets is negatively related

to the future expected growth of income. If an agent expects its income to grow in the future she’ll tend

to decumulate assets while if she expects income to fall in the future she’ll want to accumulate assets.

Suppose that the income process follows a random walk, then ∆yt = εt+1 so Et(∆yt+j) = 0 for all j ≥ 0

and ∆at = 0. Therefore, the initial wealth endowment perpetuates itself so if the individual starts above

the borrowing constraint, it will never be binding. However, if the income process is i.i, d., we have that

∆yt = εt+1 − εt, ∆yt+1 = εt+2 − εt+1,... therefore
∑∞

j=1

(
1

1+r

)j
Et∆yt+j−1 = −εt and

∆at = εt,
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which means that wealth follows a random walk and, as a result, any constraint on asset holdings will

be binding with probability one. So, whether the assumption is restrictive or not depends on the income

process, but in general this result highlights the fact that borrowing constraints cannot be ignored.

Self-insurance with borrowing constraints– With quadratic preferences, the Euler equation

needs to be modified to take into account the possibility that the borrowing constraint is binding. Suppose

households live for three periods (0, 1, 2) and face a no-borrowing constraint a1 ≥ 0. Then, (1) becomes

c0 =

 E0c1 if a1 > 0

y0 + (1 + r)a0 if a1 = 0

where the first line is just the FOC of the agent when the constraint is not binding, while the second

line descends directly from the budget constraint a1 = y0 + a0(1 + r)− c0 when the constraint is binding

(a1 = 0). So, if the constraint is binding c0 = y0 + a0(1 + r), whereas if it is not binding, the agent will

save some income and c0 < y0 + a0(1 + r).

The above condition can be written in compound form as

c0 = min {y0 + (1 + r)a0, E0c1} = min {y0 + (1 + r)a0, E0 [min {y1 + (1 + r)a1, E1c2}]} =

min {y0 + (1 + r)a0, E0 [min {y1 + (1 + r)a1, E1a2(1 + r) + y2}]}

Now, suppose that the uncertainty about future income y2 increases (keeping its mean constant). Low

realizations of income y2 become more likely and this possibility reduces the value of E0 [min {y1 + (1 + r)a1, E1a2(1 + r) + y2}]

and makes more likely that the relevant argument of the first min operator in the second line is the second

argument, thus c0 might fall. In other words even if marginal utility is linear the presence of borrowing

constraints, can make current consumption respond through future uncertainty.

Intuitively, when agents face borrowing constraints, they fear getting several consecutive bad income

realizations which would push them towards the constraint and force them to consume their income

without the ability of smoothing consumption. To prevent this situation, they save for self-insurance

(precautionary motive). Thus, we have an important result: prudence is not strictly necessary for pre-

cautionary saving behavior, or:

Result: Even in absence of prudence (e.g. with quadratic preferences), in presence of borrowing

constraints a rise in future income uncertainty can lead to a rise in current savings and a decline in

current consumption, so certaint equivalent does not hold.
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