
University of Minnesota

8107 Macroeconomic Theory, Spring 2008, Mini2

Fabrizio Perri

Notes on numerical methods for income fluctuations problems

0.1 Tauchen’s method to approximate a continuous income process

In many of the problems we studied in the previous chapter, we postulated that agents face a

continuous stochastic income process. A typical example would be assuming that income is given

by

Yt = exp (yt) ,

where yt follows a first-order autoregressive process of the class

yt = ρyt−1 + εt, (1)

with εt being an iid shock with distribution G, mean zero, and variance σε.

Solving the household consumption-saving problem with a continuous shock can be done, but

it is very costly, computationally. So it’s useful to learn how to approximate a continuous process

through a finite-state Markov chain that will mimic closely the underlying process. To approximate

the process (1) we need two ingredients: the points on the state space and the transition probabilities.

If the Markov Chain we want to use is a simple two-state chain then a simple method of moments

can be used. Symmetry in the original process implies that the Markov chain for log-income can be

written as the vector [−z,+z] and that the transition probability matrix has the form"
p 1− p

1− p p

#

so we need simply to find the value for the parameters z and p.These can be simply found by

equating the variance and the serial correlation in the VAR and in the Markov Chain i.e.

σ2AR ≡ σ2ε
1− ρ2

= z2 ≡ σ2MC

EAR(yty−1) ≡ ρ
σ2ε

1− ρ2
= (2p− 1)z2 ≡ EMC(yty−1)

which yields

z =

s
σ2ε

1− ρ2
, p =

1 + ρ

2

In general though we might want to approximate a VAR with a Markov Chain with many states (this

is for example very useful in asset pricing problems) and in this case we commonly used a procedure

developed by Tauchen (1986). Let Pr {εt ≤ ε̄} = G (ε̄) = F
¡
ε̄/
√
σε
¢
, where F is the “standardized”

version of G (εt) with unit variance. Let ỹ be the discrete-valued process that approximates y and

let {ȳ1, ȳ2, ..., ȳN} be the finite set of possible realizations of ỹ.

1

Tauchen suggests to select values ȳj so that ȳN is a multiple m (e.g., m = 3) of the unconditional

standard deviation, i.e.

ȳN = m

µ
σε

1− ρ2

¶ 1
2

,

and let ȳ1 = −ȳN (assuming G is symmetric), and {ȳ2, ȳ3, ..., ȳN−1} be located in a equispaced
manner over the interval [ȳ1, ȳN] . Denote with d the distance between successive points in the state

space. Let

πjk = Pr {ỹt = ȳk|ỹt−1 = ȳj} = Pr {ȳk − d/2 < ρȳj + εt ≤ ȳk + d/2} =

Pr {ȳk − d/2− ρȳj < εt ≤ ȳk + d/2− ρȳj}

be the generic transition probability.

Then, if 1 < k < N − 1, for each j choose

πjk = F

µ
ȳk + d/2− ρȳj√

σε

¶
− F

µ
ȳk − d/2− ρȳj√

σε

¶
,

while for the boundaries of the interval k = 1 and k = N choose:

πj1 = F

µ
ȳ1 + d/2− ρȳj√

σε

¶
,

πjN = 1− F

µ
ȳN − d/2− ρȳj√

σε

¶
.

Clearly, as d → 0 (and therefore N → ∞), the approximation becomes better and better until
it converges to the true continuous process yt. It is useful to notice that numerical integration rules

(e.g., Gaussian quadrature) could lead to a more efficient placement of the points on the the interval

[ȳ1, ȳN] .

Multivariate processes: Tauchen describes how to approximate also a multivariate process of

the form

yt = Ayt−1 + εt

where yt is now a nx1 vector, A is a nxn matrix and εt is a nx1 vector of i.i.d random variables

with mean 0 and variance-covariance matrix Σ. The key insight in representing such a multivariate

process is to recognize that the variance covariance matrix (which is symmetric) can be represented

as

Σ = QΛQ0

where Λ is a diagonal matrix and Q is the matrix of eigenvectors of Σ as columns (remember that

since Σ is symmentric Q0 = Q−1) so we can write the process as

yt = Ayt−1 + εt

Q0yt = Q0AQQ0yt−1 +Q0εt

ỹt = Ãyt−1 + ε̃t

2

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

y1

y 2

Grid over y tilde
Grid over y

Figure 1:

where ỹt = Qyt, Ã =Q0AQ and ε̃t has a diagonal variance covariance matrix Q0ΣQ = Λ.We can

then approximate ỹt with a Markov chain (since the ε are uncorrelated doing so is a straightforward

extension of the procedure described for the univariate case) and let Ỹ be the nxm matrix containing

the states of the Markov chain which approximate ỹt (here we assume that the Markov chain has

the same number of states (m) for each of the n variables). Then the states of the Markov chain

which approximate yt are simply given by the matrix Y = QỸ . As an example consider a variance

a biviariate i.i.d proces yt = εt where εt has variance covariance matrix given by

Σ =

"
1 .8

.8 1

#
=

"
−0.7071 .7071

.7071 0.7071

#"
.2 0

0 .8

#"
−0.7071 .7071

.7071 0.7071

#
= QΛQ0

using the transformation above the figure plots the grids obtained for yt and for ỹt
Notice that this strategy that can be used to approximate higher-order autoregressive processes

as well. For example, consider the AR(2) process

yt = ρ1yt−1 + ρ2yt−1 + εt.

Define a column vector Zt = [yt yt−1]
0. Then one can write the AR(2) process above in multivariate

form as

Zt =

"
ρ1 ρ2

0 1

#
Zt−1 + [εt 0]

0
.

3

0.2 Global Solution Methods for the Income-Fluctuation Problem

Local approximation methods, like linear quadratic (LQ) approximation or log-linearization, con-

struct functions that match well the properties of the desired object (say an optimal decision rule

or an equilibrium price) around a particular point. In the stochastic growth model, for example,

there is a natural point around which the approximation could be taken: the deterministic steady-

state level of capital k∗ and the mean of the shock (usually normalized to 1). Fluctuations due to

aggregate productivity shocks move the system in a small neighborhood of k∗.

When solving the consumption-saving problem with uncertainty, these considerations are no

longer valid. First, choosing a particular point on the asset grid where to approximate individual

behavior is much less obvious. In fact, depending on whether β(1 + r) is less, equal or greater

than 1 we can have either one steady state (in which wealth is equal to the borrowing constraint)

a continuum of those or none. Second, quantitatively, individual income uncertainty is much larger

than aggregate uncertainty, which means that the system moves over a large interval in the state

space. Third, in LQ approximations the marginal utility is linear and the role of uncertainty as a

motive for saving is artificially reduced (in fact, it completely disappears in absence of borrowing

constraints).

For all these reasons, we need to resort to global solution methods for the consumption-saving

problem. Let’s say that our object of interest is the optimal saving rule a0(a, y) (where a is current

wealth and y is current income). There are several ways to attack the problem. First one has to

decide the class of functions in which in want a0(a, y) to lie. One possibility is to assume that a0 (and

hence a) can take only a finite, prespecified values on a grid: this method is called discretization.

Another possibility is to assume that the optimal function lies in the class of piecewise linear functions

on a grid for a (see below) or another possibility is to assume that the function can be described

as the linear combination of special polynomials. Notice that with all this representation we reduce

the problem of approximating a generic function (an infinite dimensional object) with something

that can be described by a finite set of numbers (e.g. the number of values the function can take

on a grid). The next step is to find the numbers that chracterize the function. These can be found

either by using iterative methods (either on the value function or on the policy function) or using

non-iterative methods that involve looking directly for the parameters characterizing the solution

solving a minimization problem. In the remainder of the note we will present some examples of

these methods.

Consider the problem in its recursive formulation, with states (a, y). In general, with two state

variables, we must approximate/interpolate a function in two dimension, which is a computationally

burdensome problem.1 This is where the Tauchen’s method comes in handy. We maintain that asset

holdings a are a continuous variable and discretize the income process. In other words, we need to

find N functions a0 (a, yj) , for j = 1, ..., N.

1 If the income process is iid, remember that you can reduce the dimensionality of the state space to one variable,

cash in hand x = Ra + y. In general, whenever you can reduce the dimensionality of the state-space you should do

so. The numerical complexity of the problem increases geometrically with the dimension of the state space, e.g., the

points on the grid to be evaluated grow from N to N2 to N3, and so on.

4

Suppose we have already discretized the income process following Tauchen’s method. Then, we

can write the income fluctuation problem in recursive form as:

V (a, y) = max
{c,a0}

u (c) + β
X
y0∈Y

π (y0|y)V (a0, y0)

s.t.

c+ a0 ≤ Ra+ y

a0 ≥ −ā

The Euler equation, once we substitute the budget constraint, reads

u0 (Ra+ y − a0)− βR
X
y0∈Y

π (y0|y)u0 (Ra0 + y0 − a00) ≥ 0.

Equality holds if a0 > −ā. This is a second-order stochastic difference equation. The objective is to
find a decision rule for next period asset holding a0 (a, y), i.e., an invariant function of the states (a, y)

that satisfies the Euler Equation.We first discuss dicretization (which works well in simple problems

but is numerically very costly in more complicated problems) and then discuss more efficient way of

representing the solution.

0.2.1 Discretization

1. Construct a grid on the asset space {a1, a2, ..., aM} , with a1 = −ā. The best way to construct
the grid varies problem by problem. In general, one must put more points where the policy

function is expected to display more curvature (i.e., where it is far away from linear). In our

case, this happens for values of a near the debt constraint −ā.

2. Guess an initial vector of decision rules for a00 on the grid points:

{â0 (a1, y1) , â0 (a1, y2) , ..., â0 (a1, yN) ; â0 (a2, y1) , ..., â0 (a2, yN) ; ..., â0 (aM , yN)}

by making sure that each decision rule maps into a point on the asset grid. The subscript

denotes the iteration number, and “0” denotes the first iteration. A reasonable guess for

a000 (ai, yj) would be

â0 (ai, yj) = ai,

for example, we know that this exactly true when the utility function is quadratic and shocks

follow a random walk.

3. Determine if the liquidity constraint is binding. For each point (ai, yj) on the grid, check

whether

u0 (Rai + yj − a1)− βR
X
y0∈Y

π (y0|yj)u0 (Ra1 + y0 − â0 (a1, y
0)) > 0.

If this inequality holds, then it means that the borrowing constraint binds and a00 (ai, yj) = a1.

If it does you found the optimal asset for this grid point, if it does not continue to the next

grid point.

5

4. Determine a00 (ai, yj) . Find the pair of adjacent grid points (ak, ak+1) such that

δ (ak) ≡ u0 (Rai + yj − ak)− βR
X
y0∈Y

π (y0|yj)u0 (Rak + y0 − â0 (ak, y
0)) < 0

δ (ak+1) ≡ u0 (Rai + yj − ak+1)− βR
X
y0∈Y

π (y0|yj)u0 (Rak+1 + y0 − â0 (ak+1, y
0)) > 0,

This means that a00 (ai, yj) ∈ (ak, ak+1).2 Since we only work with points on the grid, set

a00 (ai, yj) = arg min
i∈{k,k+1}

|δ (ai) |

5. Check convergence by comparing the guess â0 (ai, yj) to the solution a00 (ai, yj) and stop if, for

each pair (ai, yj) on the grid, a00 (ai, yj) = â0 (ai, yj).

6. If convergence is achieved, stop. Otherwise, go back to point 3 with the new guess â1 (ai, yj) =

a00 (ai, yj).

This is a very simple and fast method because it avoids the calculation of the policy function

outside the grid points, but at the same time it can be imprecise, unless M is a very large number,

but in this case the method becomes computationally costly (especially if you have multi-dimensional

state space)

0.2.2 Piecewise linear approximation with policy function iteration and exogenous

grid

Let’s now assume that instead of discretizing we search for the solution for our decision rule within the

class of piecewise linear functions. As a simple background on piecewise linear function consider f(x)

a real univariate function which maps the real line into the real line. A piecewise linear approximation

of the function is completely described by a set of increasing values for x ={x1, x2,...xN} and by

the corresponding values of the function {f(x1), f(x2),...f(xN)}. In particular we can define the
piecewise linear approximation of f, f̃ as

f̃(x) =
NX
j=1

φj(x)f(xj)

2 In other words, ak is smaller than a∗ (ai, yj) because u0 (c) is too small and ak+1 is larger than a∗ (ai, yj) because

u0 (c) is too large, relative to the optimal choice.

6

where

φ1(x) =

(
x2−x
x2−x1 if x ≤ x2

0 otherwise

φ2(x) =

⎧⎪⎪⎨⎪⎪⎩
x−x1
x2−x1 if x ≤ x2

x3−x
x3−x2 if x2 ≤ x ≤ x3

0 otherwise

φj(x) =

⎧⎪⎪⎨⎪⎪⎩
x−xj−1
xj−xj−1 if xj−1 ≤ x ≤ xj
xj+1−x
xj+1−xj if xj ≤ x ≤ xj+1

0 otherwise

φN−1(x) =

⎧⎪⎪⎨⎪⎪⎩
x−xN−1

xN−2−xN−1 if xN−2 ≤ x ≤ xN−1
xN−1−x
xN−xN−1 if x ≥ xN−1

0 otherwise

φN (x) =

(
x−xN−1
xN−xN−1 if x ≥ xN−1

0 otherwise

those φ functions are sometimes called basis functions. Notice that f̃(x) is just a convenient (for

computers) representation of standard linear approximation and that the approximated function,

even though the grid is finite, is defined on the entire real line. Also notice that for every x there are at

most two basis functions that are positive. This property is particularly useful if one wants to extend

the approximation to many dimensions. For example suppose you are interested in approximating

the function f(x, y) : a piecewise linear approximation on the grid {x1, ...xN}⊗ {y1, ...yM} is a
straightforward extension of the univariate case

f̃(x, y) =
NX
j=1

MX
i=1

φj(x)φi(y)f(xj , yi)

where only 4 values of the double summation above are positive.

So a piecewise linear approximation of the function a0(a, y) (here remember that we do not treat y

as an argument of the function but just as a parameter) is given by a grid over assets {a1, a2, ..., aM}
and by a set of values for the policty function on the grid points i.e. {a0(a1,y), a0(a2, y), ..., a0(aM , y)} .
At this point we can describe one algorithm for searching a solution in this class as follows

1. Construct a grid on the asset space {a1, a2, ..., aM} with a1 = −ā.

2. Guess an initial vectors of decision rules for a00 on all grid points and call the resulting piecewise

linear approximation â000(a, y).You will need to specify as many vectors as there are values for

the Markov chain.

3. For each point (ai, yj) on the grid, use a nonlinear equation solver to look for the solution a∗

of the nonlinear equation

u0 (Rai + yj − a∗)− βR
X
y0∈Y

π (y0|yj)u0 (Ra∗ + y0 − â000 (a
∗, y0)) = 0, (2)

7

and notice that the equation solver will try to evaluate many times the function â0 outside the

grid points for assets {a1, a2, ..., aM}. Hence, the need for specifying an efficient approximation
routine.

(a) If the solution of the nonlinear equation in (2) a∗ ≥ −ā, then set a00 (ai, yj) = a∗,otherwise

set a∗ = −ā and go to on the next grid point.

4. At the end of this you will obtain new vectors for the value of the decision rule on the grid points

which define a new piecewise linear approximation â001(a, y) Check convergence by comparing

a01 (ai, yj)− a00 (ai, yj) through some pre-specified norm. For example, declare convergence at

iteration n when

max
i,j

©
|a0n (ai, yj)− a0n−1 (ai, yj) |

ª
< ε

for some small number ε which determines the degree of tolerance in the solution algorithm.

Piecewise linear interpolation is fast, and obviously preserves positivity, monotonicity and con-

cavity. However, the optimal policy obtained is not differentiable everywhere.Piecewise linear ap-

proximation with policy function iteration and exogenous grid

0.2.3 Piecewise linear approximation with policy function iteration and endogenous

grid

One problem with our previous method is that at each step it has to use a non linear equation solver

which takes time and can easily crash. If the problem is simple enough this can be avoided using

the so called endogenous grid method (see a paper by Barillas and Villaverde, 2006) . Here is how

the method work:

1. Construct a grid on the asset space {a1, a2, ..., aM} with a1 = −ā. This will not change

throughout the iteration so we called it the fixed grid.

2. Guess an initial vectors of decision rules for a00 on all grid points and call the resulting piecewise

linear approximation â000(a, y).You will need to specify as many vectors as there are values for

the Markov chain.

3. For each point (ai, yj) on the grid, look for the solution a∗ of the nonlinear equation

u0 (Ra∗ + yj − ai)− βR
X
y0∈Y

π (y0|yj)u0 (Rai + y0 − â000 (ai, y
0)) = 0,

Notice that in the previous algorith you take as given the value of assets today, the shock today

and future decision rules and solve for assets tomorrow. In this method you take as given shocks

today, assets tomorrow, future decision rules and solve for assets today. The advantage is that

the equation above, because assets tomorrow are known, can be solved analytically as

a∗ =
u−1

³
βR

P
y0∈Y π (y0|yj)u0 (Rai + y0 − â000 (ai, y

0))
´
+ ai − yi

R

so there is no need of using a non linear equation solver.

8

4. At the end of this step you will obtain a vector of current assets a0 as a function of current

shocks and future assets a00 . In order to update your decision rules, which were defined on the

fixed grid {a1, a2, ..., aM} you need to perform an extra step. In particular use the vector of

current assets as a new grid (this is the endogenous grid and it will vary at each step) and the

vector of future assets (which is the fixed grid) as the value of the functions on the endogenous

grid. Since in general the endogenous grid will be different from the fixed grid you will need to

ise linear interpolation (as defined above) to solve for the updated decison rules on the fixed

grid. (This step was not needed in the previous method). Once you do so you obtain new

vectors for decision rule which define a new piecewise linear approximation â001(a, y) on the

fixed grid. Then check convergence as above.

0.2.4 Chebyshev Approximation with policy function iteration

Chebyshev Polynomials Suppose we want to approximate a function f (x) over the interval

[−1, 1] , through a polynomial function

f̂ (x) =
NX
p=0

κpTp (x) (3)

where N is the order of the polynomial approximation, Tp (x) is called the basis functions, i.e. it is

a polynomial of order p, and κp are the coefficients that weight the various polynomials.

The Chebishev polynomials are a family of basis functions that is very useful for this type of

approximations. They are given by the simple formula

Tp (x) = cos (p arccos (x)) ,

which can be simply constructed sequentially (please verify) as

T0 (x) = 1,

T1 (x) = x,

Tp+1 (x) = 2xTp (x)− Tp−1 (x) , for p > 1.

The polynomial Tp (x) with p > 0 has p zeros located at the points xk = − cos
³
2k−1
2p π

´
, with

k = 1, 2, .., p and it has(p+ 1) extrema. All the maxima equal 1 and all the minima equal −1, so
the range of the Chebishev polynomials is [−1, 1].
Many textbooks in numerical analysis show that the Chebyshev polynomials have a useful or-

thogonality property, meaning that they can approximate arbitrarily well any continous function.

In practice here we want to find a way to determine the κp so that if we know the value of a function

on a bunch of points we can then characterize function on an entire interval. One can prove that, if

the κp coefficients are defined as

κp =

PM
k=1 f (xk)Tp (xk)PM

k=1 Tp (xk)
2

, p = 0, ..., N

9

then the approximation formula (3) is exact for those xk equal to every zero of TN (x) . Note that

the expression for κp is that of an OLS estimator that minimize the square of the distance between

the true function and the approximating polynomial on the approximating nodes, that is

min
{κp}Np=0

⎧⎨⎩
MX
k=1

"
f (xk)−

NX
p=0

κpTp (xk)

#2⎫⎬⎭
As we increase the order of the approximating Chebishev polynomial toward N = ∞, we get

closer to the true function. However, even for relatively small N , this procedure yields very good

approximations to continous functions. In particular, notice that since the Tp functions are all

bounded by one in absolute value, if the coefficients κp decline fast with p (this is something you

should always check when choosing an order of approximation), then the largest omitted term in

the error has order (N + 1) . Moreover, TN+1 (x) is an oscillatory function with (N + 1) extrema

distributed smoothly over the interval. This smooth spreading out of the error is a very important

property of optimal approximations!3

The Algorithm

1. Compute the M Chebyshev interpolation nodes on the normalized interval [−1, 1] which are
given by the simple formula

xk = − cos
µ
2k − 1
2M

π

¶
, k = 1, ...,M,

i.e. they are the zeros of the Chebyshev polynomial of order M

(a) Fix the bounds of the asset space {−ā, amax}. Transform the Chebishev nodes over [−1, 1]
into a grid over the [−ā, amax] interval, by setting

ak = −ā+ (xk + 1)
µ
amax + ā

2

¶
, k = 1, ...,M

In particular note that for k =M and M large, xk ' 1 and aM ' amax; for k = 1 and M

large, xk ' −1 and ak ' −ā.

2. Guess an initial vector of decision rules for a00 on the nodes of the grid, call it â0 (ai, yj)

3. For each point (ai, yj) on the grid, check whether the borrowing constraint binds. If not,

continue.

4. For each point (ai, yj) on the grid, use a nonlinear equation solver to look for the solution a∗

of the nonlinear equation

u0 (Rai + yj − a∗)− βR
X
y0∈Y

π (y0|yj)u0 (Ra∗ + y0 − â0 (a
∗, y0)) = 0,

and notice that the equation solver will try to evaluate many times â0 off the grid. Here, we

use the Chebishev approximation.
3The best polynomial approximation is given by the minimax polynomial (see Judd, chapter 6) which has the

property that the sign of the error term should alternate between points (the so-called Equioscillation Theorem).

10

(a) Choose an order N < M for the Chebyshev polynomials. Compute the Chebyshev

coefficients

κ0p =

PM
k=1 â0 (ak, yj)Tp (xk)PM

k=1 Tp (xk)
2

, p = 0, ..., N (4)

(b) Use the coefficients κ0p for the evaluation outside the grid points as follows:

â0 (a
∗, y0) =

NX
p=0

κ0pTp

µ
2

a∗ + ā

amax + ā
− 1
¶
.

(c) If the solution of the nonlinear equation in (2) is a∗, then set a00 (ai, yj) = a∗ and iterate

on a new grid point from step 4.

5. To check convergence, in this case, it is better to compare iteration after iteration the Chebishev

coefficients in order to get a sense of how globally distant are the policy functions obtained as

a solution in successive iterations. For example, at iteration n, one could use criterion

min
p
|κnp − κn−1p | < ε.

As explained, the Chebishev approximation can be extremely good. It is smooth and differential

everywhere, however keep in mind that it may not preserve concavity.

0.3 Non Iterative methods

Non iterative methods (sometimes called minimum weighted residuals method or projection ap-

proach) use the same types of approximation we discuss above (for example discrete, piecewise-linear

or Chebyshev) but they differ in the way the optimal function is found. Let a0(a, y, θ) be the op-

timal function we are looking for, which is characterized by the vector of parameters θ.Instead of

iterating on the policy function (or the value function) this method picks a particular loss function

(an example of a loss function would be

NX
j=1

MX
i=1

⎛⎝u0 (Rai + yj − a0(ai, yj , θ))− βR
X
y0∈Y

π (y0|yj)u0 (Ra0(ai, yj , θ) + y0 − a0(a0(ai, yi, θ), y
0, θ))

⎞⎠2

together with grids for a and for y of N and M points, and then minimizes it woth respect to

the vector of parameters θ. These methods are releatively efficient when the candidate solution is

a function of a relatively small number of parameters (i.e. when θ has low dimensionality) but it

gets harder to handle when this is not the case. So for example this method can be used when one

approximates the optimal function using Chebyshev (whcih requires a relatively small numbers of

parameters) but it is not recommended if you use discretization. Also keep in mind that when you

solve a non minear minimization problem you always have to check that you are not stuck in a local

minimum. See Judd, section 11.3 for a general description of these methods.

11

0.4 Accuracy of the Numerical Solution

Suppose that we are using the piecewise linear interpolation. How can we determine when the

solution is accurate enough that no more points in the grid are needed? Or, if we are using the

Chebyshev approximation method, how do we determine that increasing the order of the polynomial

would not lead to any significant improvement in accuracy?

0.4.1 den Haan-Marcet Test

Den Haan and Marcet (1994) devise a simple test based on Hansen J test of overidentifying restric-

tions. We present here the test applied to the consumption-saving problem. The consumption Euler

equation

u0 (ct) = βREt [u
0 (ct+1)]

implies that the residual

εt+1 = u0 (ct)− βRu0 (ct+1)

should not be correlated with any variable dated t and earlier, since the expectation at time t is

conditional on everything observable up to then. Therefore, we should have, for every t

Et [εt+1 ⊗ h (zt)] = 0, (5)

where the symbol ⊗ denotes element-by-element product. The term h (zt) is a (r × 1) vector of
functions of zt, which can include all the variables in the information set of the agent at time t like

{yj , cj , aj}tj=0. Clearly, this is true only for the exact solution. A badly approximated solution will
not satisfy this property. This is the key idea of the test proposed by den Haan and Marcet.

One can obtain an estimate of the LHS of (5) through a simulation of length S of the model and

the construction of

BS =

PS
t=1 ε̂t+1 ⊗ h (ẑt)

S
,

where ε̂t+1 and ẑt are the simulated counterparts. It can be shown that, under mild conditions,√
SBS

d→ N (0, V) , and one can construct the appropriate quadratic form for the test statistics

SB0
SV̂
−1
S BS

d→ χ2r

where V̂ −1S is the inverse of some consistent estimate of V.

Some remarks are in order. First, the test does not require any knowledge of the true solution,

which is a big advantage. Second, given a certain level of approximation in the solution, we can

always find a number S large enough so that the approximation fails the accuracy test. This is not

a problem when comparing solution methods, since one can fix the same S for both, or one can look

for the smallest S such that the method fails the test and compare these thresholds. However, when

we want to judge the accuracy of our unique solution, how large should S be? It’s not clear: Den

Haan and Marcet pick S to be 20 times larger than the typical sample period available.

12

0.4.2 Euler Equation Error Analysis

The numerically approximated Euler equation is

u0 (ct) ' βREt [u
0 (ct+1)] .

One can define the relative approximation error εt as that value such that the equation holds exactly

at t

u0 (ct (1− εt)) = βREt [u
0 (ct+1)]

Let g denote the inverse function of the marginal utility, then we have

εt = 1−
g (βREt [u

0 (ct+1)])

ct
.

For example an error of 0.01means that the agent is making a mistake equivalent to $1 for every $100

consumed when choosing consumption and saving in period t. See Aruoba, Fernandez-Villaverde

and Rubio-Ramirez (2006) for a comparison of various global solution methods of the growth model

based on Euler Equation error analysis.

0.5 Notes

See Tauchen (1986) for a detailed description of the discretization of a continuous vector-autoregressive

process. See the book by Judd on “Numerical Methods in Economics”, especially chapters 6 on

approximation and chapter 12 on dynamic programming. The book by Marimon and Scott “Com-

putational Methods for the Study of Dynamic Economies” is another very useful reference. A

recent book by Adda and Cooper on practical dynamic programming explains in detail various solu-

tion methods and proposes many nice examples. Aruoba, Fernandez-Villaverde and Rubio-Ramirez

(2006) describe in detail the properties and the accuracy of various solution methods applied to the

neoclassical growth model.

13

