LECTURE 6. INEQUALITY AND GROWTH

Fabrizio Perri Minneapolis FED and CEPR

Bonn Summer School: The Macroeconomics of Inequality June 2020

Overview

- Objective: understand the impact of the increase in inequality on aggregate growth
- Context: a statistical model of labor income process

• Over past 50 years in the United States large increase in household income inequality

- Over past 50 years in the United States large increase in household income inequality
- Many studies on its causes, less work on its direct growth impact

- Over past 50 years in the United States large increase in household income inequality
- Many studies on its causes, less work on its direct growth impact
- Changes in income inequality driven by changes in income dynamics, which naturally can have a growth impact
- Building block: changes in income dynamics that are unequal across income levels (unequal growth), affect, at the same time, aggregate growth, income inequality and welfare

- Over past 50 years in the United States large increase in household income inequality
- Many studies on its causes, less work on its direct growth impact
- Changes in income inequality driven by changes in income dynamics, which naturally can have a growth impact
- Building block: changes in income dynamics that are unequal across income levels (unequal growth), affect, at the same time, aggregate growth, income inequality and welfare
- Contribution: Use micro data and minimal theory to connect growth and inequality, estimate these changes and assess their impact on growth and welfare

Outline

- A micro decomposition of aggregate growth
- Empirical analysis on micro decomposition
- Simple model to measure the changes driving the data, and assess impact

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon $T,\,\Gamma_{t,T}$ can be written as

$$\begin{split} \Gamma_{t,T} &= \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)\\ \text{Define} \quad g_{i,T} &= \frac{y_{i,t+T}}{y_{i,t}} \quad , \quad s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \quad \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t}) \end{split}$$

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon $T,\,\Gamma_{t,T}$ can be written as

$$\begin{split} \Gamma_{t,T} &= \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)\\ \text{Define} \quad g_{i,T} &= \frac{y_{i,t+T}}{y_{i,t}} \quad , \quad s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \quad \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t}) \end{split}$$

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon $T,\,\Gamma_{t,T}$ can be written as

$$\begin{split} \Gamma_{t,T} &= \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)\\ \text{Define} \quad & \textbf{g}_{i,T} = \frac{y_{i,t+T}}{y_{i,t}} \quad , \quad \textbf{s}_{i,t} = \frac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \quad \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t}) \end{split}$$

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})

- Who grows (cov) matters for aggregate growth
- How growth takes (cov v/s g) place matter for inequality

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon T, $\Gamma_{t,T}$ can be written as

$$\begin{split} \Gamma_{t,T} &= \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)\\ \text{Define} \quad g_{i,T} &= \frac{y_{i,t+T}}{y_{i,t}} \quad , \quad s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \quad \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t}) \end{split}$$

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})

- Who grows (cov) matters for aggregate growth
- How growth takes (cov v/s g) place matter for inequality
- Similar decomposition widely used in IO (Olley and Pakes, 1996)

Insights from decomposition

$$\begin{aligned} \Gamma_T &= cov(g_{i,T}, s_i) + E(g_{i,T}) \\ &= corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T}) \end{aligned}$$

- Simple way to sum micro moments to evaluate a given Γ_T :
- Growth can be:
 - Equal ($\sigma(g_i) = 0$, $E(g_i = \bar{g})$)
 - Unequal $(\sigma(g_i) > 0)$. In this case inequality $\sigma(s_i)$ and mobility $corr(g_i, s_i)$) matter for Γ_T
- Whether growth is equal or unequal has welfare consequences

Warning: $Cov(g_i, s_i), E(g_i)$.. not independent primitives: structural changes in income dynamics change (at same time) all terms: need a theory!

Plan

- Measure Γ , $corr(g_i,s_i),\,\sigma(g_i),\,\sigma(s_i)$ and $E(g_i)$ 1967-2016, using PSID
- Simple model to identify driving force of changes

Panel Study of Income Dynamics (PSID)

- Long panel of about 5,000 HH, representative of U.S. population
- Panel essential to identify change of individual dynamics (vs composition)
- 1967-2016 (Annual until 1996, bi-annual after)
- Publicly available
- Panel data must aggregate up to macro outcomes

PSID v/s NIPA: Γ_t (4y real earnings pc)

• Aggregate PSID matches NIPA Dynamics

PSID v/s CPS: Cross sectional inequality

• PSID matches well cross sectional inequality in labor income from much larger sample (CPS)

Mapping decomposition to panel data

Let T = 4 years, $y_{j,i,t}$ be real (PCE deflated) income of HH j, in decile i in year t and P_t total population in sample in year t

$$\text{then} \qquad g_{\boldsymbol{i},t+T} = \frac{\sum_{j} y_{j,\boldsymbol{i},t+T}}{\sum_{j} y_{j,\boldsymbol{i},t}} \frac{P_t}{P_{t+T}} \quad \text{and} \quad s_{\boldsymbol{i},t} = \frac{\sum_{j} y_{j,\boldsymbol{i},t}}{\sum_{\boldsymbol{i}} \sum_{j} y_{j,\boldsymbol{i},t}}$$

Aggregating by income deciles (quintiles) useful with measurement error

- Income measure: Labor Earnings of all household members
- Sample restrictions: Households with head 25-60, with income above 20% of the pvty line, no imputed labor income, which are in sample in year t and t + 4 (avg. sample per year $\simeq 3500$)
- Similar patterns for hholds with 25-40 head (age composition)

Γ decomposition (by decile, age 25-60)

Covariance decomposition

- Increasing $\sigma(s_i)$ measure of increasing income inequality
- $Corr(g_i, s_i)$ increasing (toward 0): over time high level growing more

Changes in the microstructure of aggregate growth

From data to drivers

Macro factors (\bar{g}_t)

- Use data on $corr(g,s), \sigma(g), \sigma(s),$ (1) plus model to identify micro factors
- Use (1) and (2) to identify effect of micro factors on Γ
- Identify changes in macro factor \bar{g}_t residually

An Ayiagari-Bewley-Huggett Model

- Continuum of infinitely lived households
- Log of household *i* earning potential is

$$y_{it} = e_{it} + \alpha_i + f_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(s_{it}), \sigma_{\varepsilon t}^2 g(s_{it}))$$

$$\alpha_i \sim N(0, \sigma_\alpha)$$

$$f_{it} = h(s_{it}) + f_{it-1} \qquad h(s_{it}) = \bar{g}_t + \delta_t \frac{s_{it} - 1}{1 + s_{it}}$$

- e_{it} standard AR part. Variance of shocks $\sigma_{\varepsilon t}^2 g(s_{it})$ declining in income s_{it} (Meghir and Pistaferri, 2004)
- α_i is household fixed effect
- f_{it} is growth factor, $\bar{g}_t = \text{equal growth}, \ \delta_t = \text{unequal growth}$

Extensive margin

• Household works iff

$$Y_{it}(1-\tau) > exp(\phi_t)$$

- ϕ_t is transfer income
- If household works: earnings = Y_{it} , if not earnings = 0
- Earning potential evolves when household does not work
- ϕ_t chosen to match increase of non participant household in data (in our PSID sample from 5.3% to 8.7%)
- τ balances the gov. budget

Exercise

- Set $\delta = 0$ (no unequal growth), set parameters from micro studies and to match initial steady state (1967-1972)
- 1 change in micro factors (increase in unequal growth δ_t)
- 1 change in macro factors (decline in common growth \bar{g}_t)
- Identify changes from micro and macro data

Parameter values

Income Process Parameters		
Name	Symbol	Value
Variance of fixed effects	σ_{lpha}	0.45
Persistence of shocks	ho	0.6
Baseline sd of shocks	$\sigma_{arepsilon}$	0.21
Standard deviation gradient	χ	$0.75\sigma_{\varepsilon}$
Common growth	\bar{g}	4.5%
Transfer income ($\%$ of average Y)	ϕ	0.3
Tax rate	au	1.5%
Unequal growth	δ	0
Preference Parameters		
Discount Factor	β	0.97
Risk Aversion	θ	2
Other Parameters		
Borrowing Constraint	\overline{b}	0
Risk free rate	r	2.5%

Time paths: data and model

Initial ss and 40 years later: data and model

- Mean reversion accounts for negative slope
- Unequal growth accounts for right and left tail changes
- Common growth accounts for downward shift

Identified micro and macro changes

δ = 3%: s_i = 2 grows 1% per year faster than s_i = 1 (mean earnings)
Large decline in common growth (from 4.5% to 1.25%)

Aggregate growth impact of increase in unequal growth

- Average growth contribution over 40 years is less than 0.5% per year
- Agg. growth increases because high earnings grow faster and contribute more to aggregate

Welfare costs of increase in unequal growth

- Compute equilibria and values in B,CM and A
- Compare values in initial SS, and transition with unequal growth (keeping g_t constant)

Welfare costs of increase in unequal growth

- Compute equilibria and values in B,CM and A
- Compare values in initial SS, and transition with unequal growth (keeping g_t constant)

	Market Structure		
Risk aversion (θ)	CM	BE	А
$\theta = 2$	-6.1%	+2%	+10.3%
$\theta = 4$	-3.2%	+28.5%	+50.6%

With IM, unequal growth costly because:

- Increase permanent income inequality (Bowlus Robin, 2004, Abbott and Gallipoli, 2019, Straub, 2019), hard to insure with bond
- Increase in risk at the bottom of the distribution, where it is more costly

Conclusions

- Highlight a statistical connection between inequality and growth
- Use it to identify changes in earnings formation:
 - Increase in unequal growth can account for patterns of inequality and has effects on growth (+0.5%) and welfare (-2%,-50%)
 - ► Large decline in common growth (-3%)

Conclusions

- Highlight a statistical connection between inequality and growth
- Use it to identify changes in earnings formation:
 - Increase in unequal growth can account for patterns of inequality and has effects on growth (+0.5%) and welfare (-2%,-50%)
 - ► Large decline in common growth (-3%)
- Open issues
 - What has driven the increase in unequal growth? SBTC, reduced access to opportunities (Fogli and Guerrieri, 2019)?
 - What has driven the large decline in common growth?
 - How to share the unequal growth?