LECTURE 3. NEOCLASSICAL MACRO MODELS OF INEQUALITY. PART 2

Fabrizio Perri Minneapolis FED and CEPR

Bonn Summer School: The Macroeconomics of Inequality
June 2020

The question

- Is household income and wealth inequality quantitatively important for aggregate consumption, investment and output response to an exogenous Great Recession shock?
- 2. How do social insurance policies impact these aggregates?
- 3. How are consumption, welfare losses of aggregate shock distributed across population? How does social insurance affect that distribution?

The Basic Argument: Why May Inequality Matter for Dynamics of Recession?

- Earnings fall in recessions (unemployment rises, real wages fall)
- If low wealth households have higher MPC out of current earnings changes....
- ...then the degree of wealth inequality impacts aggregate C dynamics over the cycle.
- If, in addition, aggregate C matters for output (if Y is partially demand-determined b/c of endogenous TFP, nominal rigidities), then wealth distribution influences aggregate Y dynamics...
- ...and social insurance policies are potentially output-stabilizing.

Data meets Quantitative Theory

- Empirical analysis using US household (PSID) y, c, a data:
 - ightharpoonup How did y, c, a distribution look prior to Great Recession?
 - \blacktriangleright How did y, c, a change for individual households in the Great Recession?

Data meets Quantitative Theory

- Empirical analysis using US household (PSID) y, c, a data:
 - ightharpoonup How did y, c, a distribution look prior to Great Recession?
 - ightharpoonup How did y, c, a change for individual households in the Great Recession?
- Quantitative analysis using versions of heterogeneous household business cycle (Krusell & Smith 1998) model:
 - ▶ Does the model match the inequality facts?
 - ▶ Does wealth distribution matter (quantitatively) for response of *C, I* to Great Recession shock?
 - ▶ What about *Y* response if *Y* is partially (aggregate consumption *C*) demand-determined?

Data meets Quantitative Theory

- Empirical analysis using US household (PSID) y, c, a data:
 - lacktriangle How did y, c, a distribution look prior to Great Recession?
 - lackbox How did y, c, a change for individual households in the Great Recession?
- Quantitative analysis using versions of heterogeneous household business cycle (Krusell & Smith 1998) model:
 - ▶ Does the model match the inequality facts?
 - lackbox Does wealth distribution matter (quantitatively) for response of C, I to Great Recession shock?
 - ▶ What about Y response if Y is partially (aggregate consumption C) demand-determined?
- Policy analysis using stylized unemployment insurance (UI) system:
 - ▶ How does UI impact $\Delta C, \Delta Y$ for given wealth distribution?
 - ► How does size of UI impact the wealth distribution itself?
 - ▶ How is distribution of welfare losses from Great Recession shaped by UI?

The data

- PSID waves of 2004-2006-2008-2010. Detailed US household-level information about y, c, a.
 - ightharpoonup Panel dimension: can assess how individual households changed actions (c expenditures) during the Great Recession
 - ➤ Coarse time series dimension (biannual surveys for data between 2004 and 2010)

The data

- Variables of Interest
 - Net Worth = a = Value of all assets (including real estate) minus liabilities
 - ▶ Disposable Income = y = Total money income net of taxes (computed using TAXSIM)
 - ightharpoonup Consumption Expenditures = c = Expenditures on durables, nondurables and services (excluding health)
- Sample
 - ► All households in PSID waves 2004-2006-2008-2010, with at least one member of age 22-60

Data: Marginal Distributions

	У	С	а	SCF 07 a
Mean (2006\$)	62,549	43,980	291,616	497,747
%Share:Q1	4.5	5.6	-0.9	-0.2
Q2	9.9	10.7	8.0	1.2
Q3	15.3	15.6	4.4	4.6
Q4	22.8	22.4	13.0	11.9
Q5	47.5	45.6	82.7	82.5
90 - 95	10.8	10.3	13.7	11.1
95 - 99	12.8	11.3	22.8	25.3
Top 1%	8.0	8.2	30.9	33.5
Sample Size		6442		2910

- a: Bottom 40% holds basically no wealth
- *y*, *c*: less concentrated
- a distribution in PSID \simeq SCF except at very top

Heterogeneity (Inequality) in 2006: Joint Distributions

	% Sha	are of:	Exp.Rate
Q.a	У	С	c/y (%)
Q1	8.6	11.3	92.2
Q2	10.7	12.4	81.3
Q3	16.6	16.8	70.9
Q4	22.6	22.4	69.6
Q5	41.4	37.2	63.1

- a correlated with y and saving
- Wealth-rich earn more and save at a higher rate
- Bottom 40% hold no wealth, still account for almost 25% of spending

Moving to the theory

- Empirical evidence shows:
 - ▶ Bottom 40% have no wealth...
 - ▶ ...but account for almost 25% of consumption

Moving to the theory

- Empirical evidence shows:
 - ▶ Bottom 40% have no wealth...
 - ▶ ...but account for almost 25% of consumption
- Is a standard macro model with heterogeneous agents a la Krusell & Smith (1998) consistent with these facts?
- We then use the model as a laboratory for quantifying:
 - lacktriangle how wealth distribution affects C, I, Y responses to Great Recession shock
 - how this impact is shaped by social insurance policies
 - how welfare losses from Great Recession are distributed across wealth distribution

Model: Summary of Key Elements

- Augmented Krusell and Smith (1998) model, similar to Carroll, Slacalek, Tokuoka & White (2015)
- Exogenous aggregate shock Z moves aggregate wages w and unemployment rate $\Pi_Z(u)$. Rare but severe (Y drops $\approx 7\%$ below trend) and persistent (22 quarters) recessions.

$$Y = Z^* K^{\alpha} N(Z)^{1-\alpha}$$
$$Z^* = ZC^{\omega}$$

- Aggregate consumption C demand externality $\omega \geq 0$.
- Exogenous individual income risk
 - ▶ Unemployment risk $s \in \{u, e\}$. Increases in recessions (8.4% vs. 5.3%).
 - Income risk y, conditional on being employed. Sum of iid and persistent $(\phi = 0.97)$ component.
- Individual preference heterogeneity $\beta \sim U[0.9265, 0.9672]$.
- Constant retirement and survival risk. Basic life cycle elements and thus age heterogeneity.
- Unemployment insurance system with size $\rho = 50\%$.

Aggregate Technology

• Standard production function

$$Y = Z^* K^{\alpha} N^{1-\alpha}$$

• Total factor productivity Z^* in turn is given by

$$Z^* = ZC^{\omega}$$

- ightharpoonup C is aggregate consumption
- $\omega \geq 0$: aggregate demand externality
- ightharpoonup Benchmark model $\omega = 0$
- Focus on $Z \in \{Z_l, Z_h\}$: recession and expansion.

$$\pi(Z'|Z) = \begin{pmatrix} \rho_l & 1 - \rho_l \\ 1 - \rho_h & \rho_h \end{pmatrix}.$$

- ullet Capital depreciates at a constant rate $\delta=0.025$ quarterly.
- Capital share: $\alpha = 36\%$

Household Preferences

- ullet Continuum of households with idiosyncratic y risk
- Period utility function $u(c) = \log(c)$
- To generate sufficient wealth dispersion follow Carroll, Slacalek & Tokuoka (2015):
 - ▶ Households draw discount factor β at birth from $U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$
 - ▶ Choose $\bar{\beta}, \epsilon$ to match quarterly K/Y=10.26, Wealth Gini of working pop.=0.77. Yields annual $\beta \in [0.9265, 0.9672]$
- In working life, constant retirement prob. $1 \theta = 1/160$.
- In retirement constant death probability $1 \nu = 1/60$.

Household Preferences

- ullet Continuum of households with idiosyncratic y risk
- Period utility function $u(c) = \log(c)$
- To generate sufficient wealth dispersion follow Carroll, Slacalek & Tokuoka (2015):
 - lacktriangle Households draw discount factor eta at birth from $U[ar{eta}-\epsilon,ar{eta}+\epsilon]$
 - ▶ Choose $\bar{\beta}, \epsilon$ to match quarterly K/Y=10.26, Wealth Gini of working pop.=0.77. Yields annual $\beta \in [0.9265, 0.9672]$
- In working life, constant retirement prob. $1 \theta = 1/160$.
- In retirement constant death probability $1 \nu = 1/60$.
- Other mechanisms to generate large wealth dispersion
 - ► Entrepreneurs [Quadrini 1997]
 - ► Bequest motives [De Nardi 2004]
 - ► Health expenditure shocks in old age [De Nardi, French, Jones 2010, Ameriks, Briggs, Caplin, Shapiro, Tonetti 2015]
 - Extreme income realizations [Castaneda, Diaz-Gimenez, Rios-Rull 2003]
 - ► Heterogeneous investm. returns [Benhabib, Bisin, Zhu 2011]

Household Endowments

- Time endowment normalized to 1
- Idiosyncratic unemployment risk, $s \in S = \{u, e\}$
 - $\blacktriangleright \pi(s'|s,Z',Z)$
- Idiosyncratic labor productivity risk, $y \in Y$
 - Estimate stochastic process from annual PSID (1967-1996) data (only employed households):

$$\log(y') = p + \epsilon$$
$$p' = \phi p + \eta$$

with persistence ϕ , innovations (η, ϵ) . Find estimates of $(\hat{\phi}, \hat{\sigma}_{\eta}^2, \hat{\sigma}_{\epsilon}^2) = (0.9695, 0.0384, 0.0522)$

Turn into quarterly process, discretize into Markov chain

Government Policy

- Balanced budget unemployment insurance system
 - \blacktriangleright Replacement rate $\rho = \frac{b(y,Z,\Phi)}{w(Z,\Phi)y}$ if s=u
 - ▶ Thus benefits given by $b(y, Z, \Phi) = \rho w(Z, \Phi)y$
 - ▶ Baseline $\rho = 0.5$. Compare to $\rho = 0.1$.
 - Proportional labor income tax $\tau(Z; \rho)$ to balance budget:
- Balanced PAYGO social security system
 - Payroll tax rate $\tau_{SS} = 15.3\%$
 - Lump-sum benefits that balance the budget

Recursive Formulation of HH Problem

- Individual state variables $x = (y, s, a, \beta)$
- Aggregate state variables (Z,Φ)
- Aggregate law of motion $\Phi' = H(Z, \Phi', Z')$
- Household dynamic program problem of worker reads as

$$\begin{split} v_W(s,y,a,\beta;Z,\Phi) &= \\ \{ \max_{c,a' \geq 0} u(c) &+ \beta \sum_{(Z',s',y') \in (Z,S,Y)} \pi(Z'|Z)\pi(s'|s,Z',Z)\pi(y'|y) \\ &* [\theta v_W(s',y',a',\beta;Z',\Phi') + (1-\theta)v_R(a',\beta;Z',\Phi')] \} \end{split}$$

subject to

$$c + a' = (1 - \tau(Z; \rho) - \tau_{SS})w(Z, \Phi)y [1 - (1 - \rho)1_u] + (1 + r(Z, \Phi) - \delta)a$$

 $\Phi' = H(Z, \Phi', Z')$

Calibration of Aggregate Productivity Risk

ullet Recall that $Z \in \{Z_l, Z_h\}$ and

$$\pi(Z'|Z) = \begin{pmatrix} \rho_l & 1 - \rho_l \\ 1 - \rho_h & \rho_h \end{pmatrix}$$

- Expected *duration* of a recession is $EL_l = \frac{1}{1-\rho_l}$. Fraction of time economy is in recession is $\Pi_l = \frac{1-\rho_h}{2-\rho_l-\rho_h}$.
- Choose $\rho_l, \rho_h, \frac{Z_l}{Z_h}$ to match:
 - 1. the average length of a severe recession EL_l
 - 2. the fraction of time economy is in severe recession, Π_l .
 - 3. the decline in GDP per capita in severe recessions relative to normal times

What is a Severe Recession?

- Define start of severe recession when $u \geq 9\%$. Lasts as long as $u \geq 7\%$.
- From 1948 to 2014.III two severe recessions, 1980.II-1986.II and 2009.I-2013.III.
- Frequency of severe recessions: $\Pi_l=16.48\%$, expected length of 22 quarters.
- Average unemployment rate $u(Z_l) = 8.39\%$, $u(Z_h) = 5.33\%$
- Implied transition matrix:

$$\pi = \left(\begin{array}{cc} 0.9545 & 0.0455 \\ 0.0090 & 0.9910 \end{array}\right)$$

- Average output drop in severe recessions measured as $\frac{Y_l}{Y_h} = 0.9298$. Matching this in model requires $\frac{Z_l}{Z_h} = 0.0614$
- Matching this in model requires $\frac{Z_l}{Z^h} = 0.9614$.

 Severe recession similar in spirit to rare disasters [Rietz 1988, Barro 2006, Gourio 2015]

Idiosyncratic Employment status Transitions

Transition matrices $\pi(s'|s,Z',Z)$ for $s,s'\in\{u,e\}$ calibrated to quarterly job finding rates (computed from CPS). For example

• Economy is and remains in a recession: $Z = Z_l, Z' = Z_l$

$$\begin{pmatrix} 0.34 & 0.66 \\ 0.06 & 0.94 \end{pmatrix}$$

• Economy is and remains in normal times: $Z = Z_h, Z' = Z_h$

$$\begin{pmatrix} 0.19 & 0.81 \\ 0.05 & 0.95 \end{pmatrix}$$

- In recessions more likely to lose job and less likely to find one.
- Thus as economy falls into recession, UE risk up (and more persistent) even for those not yet having lost job. Strong precautionary savings motive for wealth-poor!

Model: Summary of Key Elements

- Exogenous aggregate shock Z moves aggregate wages w and unemployment rate $\Pi_Z(u)$. Rare but severe recessions.
- Potentially: aggregate consumption C demand externality $\omega > 0$.
- Exogenous individual income risk
 - lacktriangle (Un-)employment risk $s \in \{u, e\}$. Increases in recessions
 - ightharpoonup Income risk y, conditional on being employed
- Exogenous individual preference heterogeneity $\beta \sim U[\bar{\beta} \epsilon, \bar{\beta} + \epsilon]$. Constant survival risk θ .
- Basic life cycle elements and thus age heterogeneity
- Unemployment insurance system with size ρ .

Versions of Model

- 1. Original Krusell & Smith (1998) [KS] economy (single discount factor + income risk + low ρ)
- 2. Economy 1+ heterogenous β 's, survival risk $\theta<1$ and high $\rho=50\%$ [Benchmark]
- 3. Economy 2 + aggregate demand externality $\omega > 0$

Inequality in the Benchmark Economy

New Worth	Da	ta	Models		
% Share held by:	PSID, 06	SCF, 07	Bench	KS	
Q1	-0.9	-0.2	0.3	6.9	
Q2	0.8	1.2	1.2	11.7	
Q3	4.4	4.6	4.7	16.0	
Q4	13.0	11.9	16.0	22.3	
Q5	82.7	82.5	77.8	43.0	
90 - 95	13.7	11.1	17.9	10.5	
95 - 99	22.8	25.3	26.0	11.8	
T1%	30.9	33.5	14.2	5.0	
Gini	0.77	0.78	0.77	0.35	

- Benchmark economy does a good job matching bottom and top of wealth distribution, but still misses very top.
- Original KS economy does not produce enough inequality.

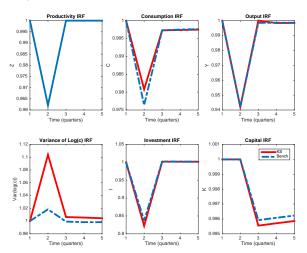
Joint Distributions (2006): data v/s model

% Share of:						
	У		С		%c/y	
a Quintile	Data	Model	Data	Model	Data	Model
$\overline{Q1}$	8.6	6.0	11.3	6.6	92.2	90.4
Q2	10.7	10.5	12.4	11.3	81.3	86.9
Q3	16.6	16.6	16.8	16.6	70.9	81.1
Q4	22.6	24.6	22.4	23.6	69.6	78.5
Q5	41.4	42.7	37.2	42.0	63.1	79.6

- Model captures well that bottom 40% has almost no wealth but significant consumption share
- But overstates consumption shares and rates of the rich.
- Rudimentary life cycle is crucial for level of consumption rates and their decline with wealth.

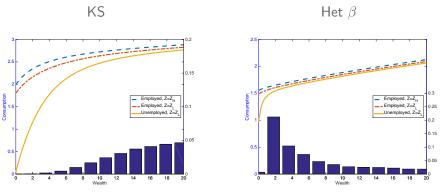
Dynamics of a,y,c/y During Recession (2006-2010) across Wealth Quintiles: Data v/s Model

	Δ a $(\%)$		Δy	·(%)	Δ c/y(pp)	
a Q.	Data	Model	Data	Model	Data	Model
Q1	NA	24	7.4	4.9	-4.4	-0.4
Q2	4	15	5.2	0.3	-2.1	0.8
Q3	6	8	2.1	-2.4	-0.7	2.2
Q4	2	4	1.7	-4.0	-2.1	3.2
Q5	-5	-1	-1.1	-6.4	-1.6	4.6


- Model's issues:
 - ▶ Model captures well that wealth-poor cut consumption rates the most.
 - ightharpoonup Too much y fall for rich (too much mean reversion).
 - ▶ Too small decline in *a* at the top of wealth distribution in model (no price movements).
- \bullet Now: use the model to understand how wealth inequality matters for C,I,Y dynamics.

Inequality and the Aggregate Dynamics of a Severe Crisis

In order to understand how wealth inequality matters for C,I,Y dynamics, we compare:

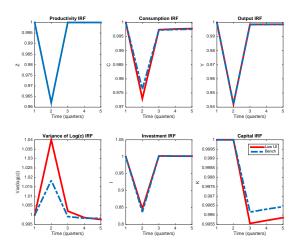

- ullet KS economy, with low wealth inequality (behaves pprox as RA economy)
- The calibrated heterogenous β (baseline) economy
- $\bullet\,$ Note: calibration insures both economies have same average K/Y ratio.
- Focus on household heterogeneity and consumption dynamics in recessions shared with Guerrieri & Lorenzoni (2011), Berger & Vavra (2014), Glover, Heathcote, Krueger & Rios-Rull (2014), Heathcote & Perri (2014)

IRF, 2 Economies: One Period Recession

- Consumption drop: KS -1.9% vs Baseline -2.4.%
- More wealth inequality -> to $\approx 26\%$ bigger consumption drop. WHY?

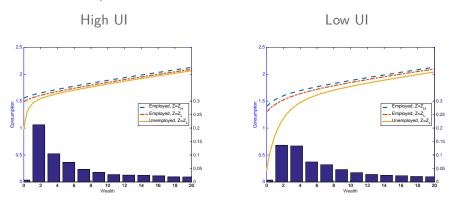
Consumption Functions & Wealth Distribution

- KS: more concave consumption function (because of $\rho=0.01$), but little mass close to $a\approx 0$
- Benchmark puts significant mass where consumption falls the most in recessions
- Note: households with $a \approx 0$ do not all act as hand-to-mouth (HtM) consumers. Those without job losses cut c more than y.
- Alternatives for generating high MPC households: Wealthy HtM [Kaplan & Violante 2014], Durables [Berger & Vavra 2015]

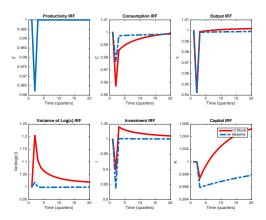

Net Worth Distributions and Consumption Decline: Different Versions of the Model

			Models*			
% Share:	KS	$+\sigma(y)$	+Ret.	$+\sigma(\beta)$	+UI	KS+Top 1%
Q1	6.9	0.7	0.7	0.7	0.3	5.0
Q2	11.7	2.2	2.4	2.0	1.2	8.6
Q3	16.0	6.1	6.7	5.3	4.7	11.9
Q4	22.3	17.8	19.0	15.9	16.0	16.5
Q5	43.0	73.3	71.1	76.1	77.8	57.9
90 - 95	10.5	17.5	17.1	17.5	17.9	7.4
95 - 99	11.8	23.7	22.6	25.4	26.0	8.8
T1%	5.0	11.2	10.7	13.9	14.2	30.4
Wealth Gini	0.350	0.699	0.703	0.745	0.767	0.525
ΔC	-1.9%	-2.5%	-2.6%	-2.9%	-2.4%	-2.0%

The Impact of Social Insurance Policies


- How does presence of unemployment insurance (UI) affect the response of macro economy to aggregate shock?
- Two effects:
 - ▶ UI moderates individual consumption decline for given wealth
 - UI changes precautionary savings incentives and thus modifies the wealth distribution
- Two experiments:
 - ▶ (I) Run $\rho = 0.5 \text{ v/s}$ $\rho = 0.1 \text{ in benchmark economy.}$ Both effects present.
 - II) Hit both $\rho = 0.5$ v/s $\rho = 0.1$ economies with recession, starting with same wealth distribution. Isolates the first effect.

Experiment I: One Time Shock, two Levels of UI


- Consumption drop: Low UI -2.9% vs Baseline -2.4%.
- Difference moderated by adjustment of wealth distribution.

Consumption Functions & Wealth Distribution

- Benchmark: 25% with close to zero NW, compared to 15% with low UI
- Impact of UI on aggregate consumption response is muted because low UI shifts wealth distribution to right.
- How important is this effect? Suppose wealth distribution would NOT respond: Consumption disaster!

IRF, Fixed Distribution: One Time Shock

- Consumption drop: Low UI -4.4% vs Baseline -2.4%.
- Note: consumption would drop almost as much as output! But faster recovery.

Inequality and Aggregate Economic Activity

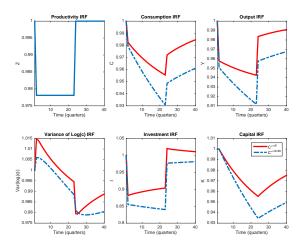
- So far, output Y was predetermined in the short-run
 - $ightharpoonup Z^*$ and N fluctuating exogenously.
 - K predetermined in short run

$$Y = Z^* K^{\alpha} N^{1-\alpha}$$

- Focus was on consumption C. Now: model supply and demand-side determinants of Y:
 - ightharpoonup The supply side: Endogenizing labor supply N [see Chang & Kim 2007]
 - ▶ The demand side: Consumption Externality $Z^* = ZC^{\omega}$. Reduction in C feeds back into TFP
- Key question again: how does wealth distribution affect output dynamics now that Y is meaningfully endogenous.

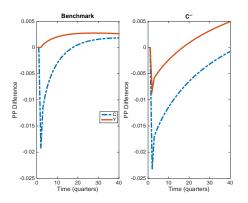
A Model with an Aggregate Consumption Externality

- Now $Z^* = ZC^{\omega}$ with $\omega > 0$.
- Reduced form version of real aggregate demand externalities [e.g. Bai, Rios-Rull & Storesletten 2012, Huo & Rios-Rull 2013, Kaplan & Menzio 2014]
- Alternatively, could have introduced nominal rigidities making output partially demand determined [Het. HH New Keynesian models: Görnemann, Küster, Nakajima 2014, Challe, Matheron, Ragot, Rubio-Ramirez 2014, Auclert 2015, Kaplan, Moll and Violante, 2018]
- "Demand management" may be called for even in absence of household heterogeneity
- Social insurance policies (such as UI) may be desirable from individual insurance and aggregate point of view


Thought Experiments

- ullet Re-calibrate Z,ω to match output volatility
- Simulate Great Recession with externality turned on, off. *Question I*: How much amplification?
- Repeat low-UI thought experiment in $\omega>0$ economy. Question II: How important is aggregate demand stabilization through UI?
- Measure welfare losses of falling into a great recession and losing job. Question III: How do losses depend on household characteristics, ω , UI?

Thought Experiments: Executive Summary of Answers


- Simulate Great Recession with externality turned on, off.
 - ▶ Question I: How much amplification?
 - ► Answer: Recession 2-3 pp deeper. Gap increasing over time
- Repeat low-UI thought experiment in $\omega > 0$ economy.
 - ▶ Question II: How important is aggregate demand stabilization through UI?
 - ► Answer: Avoids additional output recession of 1%
- Measure welfare losses of falling into a great recession and losing job.
 - **Proof.** Question III: How do losses depend on household characteristics, ω , UI?
 - Answer: Welfare losses very heterogeneous and large (1.5% to 11%). Have significant aggregate component. Much larger for wealth-poor if UI is small. Amplified by $\omega > 0$.

Question I: How much Amplification from $\omega > 0$?

Recession 2-3 pp deeper with $\omega>0$. Gap increasing over time.

Question II: Difference in C, Y IRF with High, Low UI $(\omega = 0, \omega > 0)$, Fixed Wealth Distribution?

- Baseline (left panel): Low UI makes consumption recession much more severe, but no impact on output dynamics.
- Demand externality economy (right panel): Now low UI also has persistent negative effect on output.