Lecture 2. Neoclassical macro models of inequality. Part 1

Fabrizio Perri Minneapolis FED and CEPR

Bonn Summer School: The Macroeconomics of Inequality June 2020

The papers

- Huggett, M (1993) "The risk free rate in heterogenous incomplete market economies", Journal of Economic Dynamics and Control
- Aiyagari, R. (1994) "Uninsured Idiosyncratic Risk and Aggregate Saving."Quarterly Journal of Economics
- Wang N. (2003), "Caballero Meets Bewley: The Permanent-Income Hypothesis in General Equilibrium ", American Economic Review
- Krusell, P. and A. Smith, (1998) "Income and Wealth Heterogeneity in the Macroeconomy, "Journal of Political Economy
- D. Krueger, K. Mittman, and F. Perri, (2016) "Macroeconomics and Household Heterogeneity, "Handbook of Macroeconomics

A Framework Without Aggregate Uncertainty

- Continuum of measure 1 of individuals, each facing an income fluctuation problem
- Stochastic labor endowment process $\{y_{it}\}_{t=0}^\infty$
- Labor endowment process follows stationary Markov process with transitions $\pi(y'|y)$
- Labor income: $w_t y_{it}$
- Law of large numbers: $\pi(y'|y)$ is also the deterministic fraction of the population that has this particular transition.

A Framework Without Aggregate Uncertainty

- Continuum of measure 1 of individuals, each facing an income fluctuation problem
- Stochastic labor endowment process $\{y_{it}\}_{t=0}^{\infty}$
- Labor endowment process follows stationary Markov process with transitions $\pi(y'|y)$
- Labor income: $w_t y_{it}$
- Law of large numbers: $\pi(y'|y)$ is also the deterministic fraction of the population that has this particular transition.
- Stationary distribution associated with $\pi,$ denoted by $\Pi,$ assumed to be unique.
- At period 0 income of all agents, $y_0,$ is given. Population distribution given by $\Pi.$
- Total labor endowment in the economy at each point of time

$$\bar{L} = \sum_{y} y \Pi(y)$$

Examples

- y is a Markov Chain with N states with transition probability denoted by a nxn matrix Q. In this case the stationary distribution is the nx1 eigen-vector of Q associated with the unit eigen-value of Q. If Q is stochastic and has all non zero elements the stationary distribution exists and is unique.
- y is an AR process $y_t = \bar{y} + \rho y_{t-1} + \epsilon_t$, where $\epsilon \to N(0, \sigma^2)$. In this case the stationary distribution is given by $N(\frac{\bar{y}}{11-\rho}, \frac{1}{1-\rho^2}\sigma^2)$
- y is the sum of three components. A fixed effect z_i , a persistent component $y_{it} = \rho y_{it-1} + \epsilon_{it}$ and a purely transitory component $x_{it} = \eta_{it}$
- Substantial idiosyncratic uncertainty, but no aggregate uncertainty. Look for stationary equilibrium with constant \boldsymbol{w} and \boldsymbol{r}

Preferences and Budget Constraints

• Preferences

$$u(c) = E_0 \sum_{t=0}^{\infty} \beta^t U(c_t)$$

with $0 < \beta < 1$

• Budget constraint

$$c_t + a_{t+1} = w_t y_t + (1 + r_t) a_t$$

- Borrowing constraint $a_{t+1} \ge -\bar{a}$
- Initial conditions of agent (a_0,y_0) with initial population measure $\lambda_0(a_0,y_0)$
- Allocation: $\{c_t(a_0, y^t), a_{t+1}(a_0, y^t)\}$

Labor and Capital Demand

- Solving the household problem above yields an aggregate labor supply and an aggregate capital supply.
- In equilibrium these will be equated to aggregate labor and capital demand ${\cal L}(w)$ and ${\cal K}(r)$

Labor and Capital Demand

- Solving the household problem above yields an aggregate labor supply and an aggregate capital supply.
- In equilibrium these will be equated to aggregate labor and capital demand ${\cal L}(w)$ and ${\cal K}(r)$
- Examples:
- Pure Credit Economy (Huggett, 1993). Firms have a linear technology Y = L so w = 1, and when w = 1 labor demand always equal supply (equivalent to a backyard technology). Capital demand is 0.
- Production Economy (Aiyagari, 1994) Firms use a CRS technology $Y = F(K,L) + (1-\delta)K$ and capital and labor demand are implicitly defined by

$$r = F_k(K, L) - \delta$$
$$w = F_L(K, L)$$

Recursive Equilibrium

- Individual state (a, y)
- Aggregate state variable: $\lambda(a, y)$ in the sense that prices might depend on the distribution of resources in the economy
- $A = [-\bar{a}, \infty)$: set of possible asset holdings
- Y : set of possible labor endowment realizations
- Let the state space be $S=A\times Y$ and all possible subsets of the state space $\mathcal{B}(S).$
- Let Λ the set of all probability measures on the measurable space $(S, \mathcal{B}(S))$

Household problem in recursive formulation

$$= \max_{\substack{c \ge 0, a' \ge 0}} u(c) + \beta \sum_{\substack{y' \in Y}} \pi(y'|y) v(a', y'; \lambda')$$

s.t.
$$c + a' = w(\lambda)y + (1 + r(\lambda))a$$

 $\lambda' = H(\lambda)$

• Function $H:\Lambda \to \Lambda$ is called the aggregate "law of motion"

Transition Functions

- How can we obtain next period distribution, given this period distribution?
- Define $Q((a, y), \mathcal{A} \times \mathcal{Y})$ as the probability that an individual with current state (a, y) transits to the set $\mathcal{A} \times \mathcal{Y}$ next period, formally $Q: Sx\mathcal{B}(S) \to [0, 1]$, and

$$Q\left(\left(a,\varepsilon\right),\mathcal{A}\times\mathcal{E}\right) = \sum_{y'\in\mathcal{Y}} I\left\{a'(a,y)\in\mathcal{A}\right\}\pi(y',y)$$

where I is the indicator function, a'(a, y) is the optimal saving policy and $\pi(y', y)$ is the transition probability function i.e. the probability of having shock y' tomorrow given that the shock today is y.

+ Q is our transition function and the associated T^{\ast} operator yields

$$\lambda'\left(\mathcal{A}\times\mathcal{Y}\right)=T^{*}(\lambda)=\int_{A\times Y}Q\left(\left(a,y\right),\mathcal{A}\times\mathcal{Y}\right)d\lambda\left(a,y\right).$$

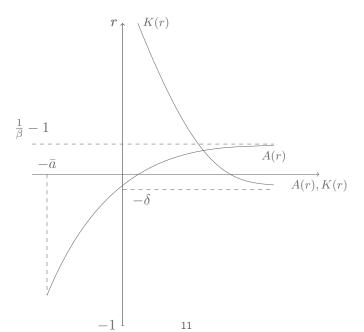
Stationary recursive competitive equilibrium

- A SRCE is a value function v, policy functions for the household a', and c; demands for savings K(r) and Labor L(w), interest rate r and wages w; and measure $\lambda^* \in \Lambda$ such that:
- given $r,\,w$ the policy functions a^\prime and c solve the household's problem and v is the associated value function
- the asset market and labor market clears: $K(r) = \int_{A \times E} a'(a, y) d\lambda^*(a, y), L(w) = \int_{A \times E} y d\lambda^*(a, y)$
- for all $(\mathcal{A}\times\mathcal{Y})\in\mathcal{B},$ the invariant probability measure λ^* satisfies

$$\lambda^{*}\left(\mathcal{A}\times\mathcal{Y}\right)=\int_{A\times Y}Q\left(\left(a,y\right),\mathcal{A}\times\mathcal{Y}\right)d\lambda^{*}\left(a,y\right),$$

where \boldsymbol{Q} is the transition function.

Graphical representation of the equilibrium



The model with exponential utility (Wang, 2003)

- Huggett economy, many agents each with idiosyncratic shock
- No borrowing constraints,
- Wealth in zero net supply
- Note that exponential utility is special as it allows negative consumption.

The Basic Model

• Utility

$$E\sum_{t=0}^{\infty}\beta^{t}u(c_{t})$$
$$u(c) = -\frac{1}{\gamma}e^{-\gamma c}$$

• Income process

$$y_t = \rho_0 + \rho_1 y_{t-1} + \varepsilon_t$$

$$\varepsilon_t \rightarrow N(0, \sigma)$$

$$\rho_0 > 0, 0 < \rho_1 < 1$$

• Budget Constraint

$$a_{t+1} = (1+r)a_t + y_t - c_t$$

Permanent Income

Permanent income P_t in terms of today's wealth is

$$P_{t} = \frac{1}{1+r} E_{t} \sum_{j=0}^{\infty} \left(\frac{1}{1+r}\right)^{j} y_{t+j}$$

that after some algebra reduces to

$$P_t = \frac{1}{1 + r - \rho_1} (y_t + \frac{\rho_0}{r})$$

If $\rho_0 = 0$ we have

$$P_t = \frac{1}{1+r-\rho_1}y_t$$

that reduces to the familiar

$$P_t = \frac{y_t}{r}$$

in the case in which $\rho_1 = 1$, and

$$P_t = \frac{1}{1+r}y_t$$

in the case in which $\rho_1 = 0$.

The consumption function

Optimal consumption can be written (using Euler equation and quite a bit of algebra) as

$$c_t = ra_t + \frac{r}{1 + r - \rho_1} y_t - \frac{1}{\gamma r} \left(\log(\beta(1+r)) + \log(E(e^{\frac{-\gamma \varepsilon r}{1 + r - \rho_1}})) \right)$$

$$c_t = ra_t + rP_t - \Gamma_1 - \Gamma_2$$

Equal to PIH consumption except 2 constants

Saving, 1

Write saving as

$$s_{t} = ra_{t} + y_{t} - c_{t}$$

$$= y_{t} - \frac{r}{1 + r - \rho_{1}}y_{t} - \frac{\rho_{0}}{1 + r - \rho_{1}}$$

$$= \frac{y_{t}(1 - \rho_{1})}{1 + r - \rho_{1}} - \frac{\rho_{0}}{1 + r - \rho_{1}}$$

$$s_{t} = (y_{t} - \bar{y})\frac{(1 - \rho_{1})}{1 + r - \rho_{1}} + \Gamma_{1} + \Gamma_{2}$$

$$\bar{y} = \frac{\rho_{0}}{1 - \rho_{1}}$$

Saving can be decomposed in three parts

- Rainy days saving: $(y_t \bar{y}) \frac{(1-\rho_1)}{1+r-\rho_1}$
- Precautionary saving $\Gamma_1 = \frac{1}{\gamma r} \left(\log(E(e^{\frac{-\gamma \varepsilon r}{1+r-\rho_1}})) \right)$
- Intertemporal substitution saving $\Gamma_2 = \frac{1}{\gamma r} \left(\log(\beta(1+r)) \right)$

Saving, 2

Saving for rainy days is always 0 (due to the law of large numbers) so for total saving to be 0 it must be that $\int \Gamma_1 + \int \Gamma_2 = 0$. Since Γ_1, Γ_2 are constants $\Gamma_1 + \Gamma_2 = 0$ Now if $r = \frac{1}{\beta} - 1, \Gamma_1 + \Gamma_2 > 0$, if $r = -1, \Gamma_1 + \Gamma_2 = -\infty$

Hence by continuity there exists an $r < \frac{1}{\beta} - 1$ such that $\Gamma_1 + \Gamma_2 = 0$.

- In this economy consumption is exactly like in the PIH. Negative intertemporal substitution saving (because $r < \frac{1}{\beta} 1$) exactly compensates positive precautionary saving
- Result heavily relies on the fact that total saving is in 0 net supply.

Changes in Consumption

One can derive (easier in in the case of $\rho_1 = 0$ (i.i.d)) an expression for changes in consumption

$$\Delta c_t = \frac{r}{1+r} \left(y_{t+1} - \rho_0 \right) + \frac{1}{\gamma r} \left(\log(\beta(1+r) + \log E(e^{\frac{-\gamma \varepsilon r}{1+r-\rho_1}})) \right)$$

- Consumption is a random walk and the only case in which an equilibrium exists is the one where there is no drift (because there is no drift in income).
- In equilibrium variance of wealth and consumption distribution explode but equilibrium exists because wealth still integrates to 0 (there are just as many agents with infinitely positive wealth as agents with infinitely negative).

Changes in Wealth

$$a_{t+1} - a_t = \Delta a_t = y_t + ra_t - c_t = y_t - rP_t + \Gamma_1 + \Gamma_2 = \frac{y_t(1 - \rho_1)}{1 + r - \rho_1} + \Gamma_1 + \Gamma_2$$

shows for example how wealth goes to $+\infty$ if $\beta(1+r) = 1$ and there is even a tiny risk, or how if there is no risk and $\beta(1+r) > 1$