Unequal Growth

Francesco Lippi and Fabrizio Perri EIEF, Luiss FRB of Minneapolis

Carnegie Mellon University Tepper School of Business

Carnegie-Rochester-NYU Conference on Public Policy

April 2022

• Over past 50 years in the United States large increase in household income inequality

- Over past 50 years in the United States large increase in household income inequality
- Many studies on its causes, less work on its direct growth impact

- Over past 50 years in the United States large increase in household income inequality
- · Many studies on its causes, less work on its direct growth impact
- Idea: changes in income dynamics that are unequal across income levels (unequal growth), affect, at the same time, aggregate growth, income inequality and welfare

- Over past 50 years in the United States large increase in household income inequality
- · Many studies on its causes, less work on its direct growth impact
- Idea: changes in income dynamics that are unequal across income levels (unequal growth), affect, at the same time, aggregate growth, income inequality and welfare
- Contribution: use micro data and minimal theory to connect growth and inequality, identify these changes and assess their impact on growth and welfare

Outline

- A micro decomposition of aggregate growth
- Empirical analysis on micro decomposition
- Simple model plus empirical analysis: identify changes driving income inequality (unequal growth)
- Assess impact of unequal growth on growth and welfare

Some Related literature

- Empirical: "Earnings, Inequality and Mobility in the United States", Kopczuk, Saez and Song 2010, "The Nature of Countercyclical Income Risk" Guvenen, Ozkan, and Song. 2014
- Models of Income Inequality: "Uninsured Idiosyncratic Risk and Aggregate Saving", Ayiagari 1994, "Uneven Growth: automation's impact on Income and Wealth Inequality", Moll, Rachel and Restrepo 2019
- From Micro to Macro: "The Granular Origins of Aggregate Fluctuations", Gabaix 2011, "Misallocation and growth", Jovanovic 2014, "Skill Heterogeneity and Aggregate Labor Market Dynamics", Grigsby 2020

• Let y_{it} real income of household i at time t

Defi

• Aggregate growth in period t over horizon T, Γ_t can be written as

$$\Gamma_t = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

ne $g_{i,t} = \frac{y_{i,t+T}}{y_{i,t}}$, $s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})}$ so that $\Gamma_t = E_i(g_{i,t} \cdot s_{i,t})$

- Let *y_{it}* real income of household *i* at time *t*
- Aggregate growth in period t over horizon T, Γ_t can be written as

$$\Gamma_t = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

- Define $g_{i,t} = \frac{y_{i,t+T}}{y_{i,t}}$, $s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})}$ so that $\Gamma_t = E_i(g_{i,t} \cdot s_{i,t})$
- Use the def. of *cov* and $E_i(s_{i,t}) = 1$

- Let *y_{it}* real income of household *i* at time *t*
- Aggregate growth in period t over horizon T, Γ_t can be written as

$$\Gamma_t = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

- Define $g_{i,t} = \frac{y_{i,t+T}}{y_{i,t}}$, $s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})}$ so that $\Gamma_t = E_i(g_{i,t} \cdot s_{i,t})$
- Use the def. of *cov* and $E_i(s_{i,t}) = 1$

$$\Gamma_t = cov(g_{i,t}, s_i) + E(g_{i,t})$$

= corr(g_{i,t}, s_{i,t})\sigma(g_{i,t})\sigma(s_{i,t}) + E(g_{i,t})

- Let *y_{it}* real income of household *i* at time *t*
- Aggregate growth in period t over horizon T, Γ_t can be written as

$$\Gamma_t = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

- Define $g_{i,t} = \frac{y_{i,t+T}}{y_{i,t}}$, $s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})}$ so that $\Gamma_t = E_i(g_{i,t} \cdot s_{i,t})$
- Use the def. of *cov* and $E_i(s_{i,t}) = 1$

$$\Gamma_t = cov(g_{i,t}, s_i) + E(g_{i,t})$$

= corr(g_{i,t}, s_{i,t})\sigma(g_{i,t})\sigma(s_{i,t}) + E(g_{i,t})

• Similar decomposition widely used for firms (Olley and Pakes, 1996), more interesting tradeoff when applying it to households!

Insights from decomposition

$$\Gamma_t = cov(g_{i,t}, s_{i,t}) + E(g_{i,t})$$

= corr(g_{i,t}, s_{i,t})\sigma(g_{i,t})\sigma(s_{i,t}) + E(g_{i,t})

 Simple way to sum micro moments to evaluate a given Γ How growth happens (*cov* v/s g) matters for inequality

Insights from decomposition

$$\begin{aligned} \Gamma_t &= cov(g_{i,t},s_{i,t}) + E(g_{i,t}) \\ &= corr(g_{i,t},s_{i,t})\sigma(g_{i,t})\sigma(s_{i,t}) + E(g_{i,t}) \end{aligned}$$

- Simple way to sum micro moments to evaluate a given Γ How growth happens (*cov* v/s g) matters for inequality
- When growth unequal (σ(g_i) > 0) Inequality σ(s_i) and mobility corr(g_i, s_i) matter for Γ
 Who grows (cov) matters for aggregate growth

Warning: $Cov(g_i, s_i), E(g_i)$.. not independent primitives: structural changes in income dynamics change (at same time) all terms: need a theory!

Next

- Measure Γ , $corr(g_i, s_i)$, $\sigma(g_i)$, $\sigma(s_i)$ and $E(g_i)$ 1967-2018, using PSID
- Simple model to identify driving force of changes

Panel Study of Income Dynamics (PSID)

- Long panel of an average 6,000 HH, representative of U.S. population
- Panel essential to identify change of individual income dynamics
- 1967-2018 (Annual until 1996, bi-annual after)
- Publicly available
- Panel data must aggregate up to macro outcomes

PSID v/s NIPA: Γ_t (5y real earnings pc)

- Growth in 2018 is Avg(2018 16 14)/Avg(2012 10 08)
- Aggregate PSID matches NIPA Dynamics

PSID v/s CPS: Cross sectional earnings inequality

PSID matches earnings inequality from larger sample (ASEC CPS)

Mapping decomposition to panel data

$$\bar{y}_{j,t} = \frac{y_{jt} + y_{jt-2} + y_{jt-4}}{3}$$

is real (PCE deflated) average 5-years income of HH *j*. Let I_t be *ith* decile of $\bar{y}_{j,t}$ in year *t* and \bar{P}_t average sample population

then
$$\mathbf{g}_{i,t} = \frac{\sum_{j \in \mathbf{I}_t} \bar{y}_{j,t+6}}{\sum_{j \in \mathbf{I}_t} \bar{y}_{j,t}} \frac{\bar{P}_t}{\bar{P}_{t+6}}$$
 and $\mathbf{s}_{i,t} = \frac{\sum_{j \in \mathbf{I}_t} \bar{y}_{j,t}}{\sum_{I_t} \sum_{j \in \mathbf{I}_t} \bar{y}_{j,t}}$

Mapping decomposition to panel data

$$\bar{y}_{j,t} = \frac{y_{jt} + y_{jt-2} + y_{jt-4}}{3}$$

is real (PCE deflated) average 5-years income of HH *j*. Let I_t be *ith* decile of $\bar{y}_{j,t}$ in year *t* and \bar{P}_t average sample population

then
$$g_{i,t} = \frac{\sum_{j \in I_t} \overline{y}_{j,t+6}}{\sum_{j \in I_t} \overline{y}_{j,t}} \frac{\overline{P}_t}{\overline{P}_{t+6}}$$
 and $s_{i,t} = \frac{\sum_{j \in I_t} \overline{y}_{j,t}}{\sum_{I_t} \sum_{j \in I_t} \overline{y}_{j,t}}$

- · Averaging by years/deciles useful with measurement error
- Growth of decile *I* in *t* computed using same of group of households

Mapping decomposition to panel data

$$\bar{y}_{j,t} = \frac{y_{jt} + y_{jt-2} + y_{jt-4}}{3}$$

is real (PCE deflated) average 5-years income of HH *j*. Let I_t be *i*th decile of $\bar{y}_{j,t}$ in year *t* and \bar{P}_t average sample population

hen
$$\mathbf{g}_{i,t} = \frac{\sum_{j \in I_t} \overline{y}_{j,t+6}}{\sum_{j \in I_t} \overline{y}_{j,t}} \frac{\overline{P}_t}{\overline{P}_{t+6}}$$
 and $\mathbf{s}_{i,t} = \frac{\sum_{j \in I_t} \overline{y}_{j,t}}{\sum_{I_t} \sum_{j \in I_t} \overline{y}_{j,t}}$

· Averaging by years/deciles useful with measurement error

t

- Growth of decile I in t computed using same of group of households
- Income measure: Labor Earnings of all household members
- Sample restrictions: Households with head 25-60, total income > 20% of pvty line, no imputed labor income, in sample in years from t 4 to t + 6 (avg. sample per year \simeq 2000)

Unequal Growth in the 70s (low inequality)

- Unequal growth across earning distribution: $\sigma(g_i) > 0$
- Poor grow faster than rich: $corr(g_i, s_i) < 0$
- L shaped curve

Inequality surges (80s and 00s)

- L turn in U shaped curve, $corr(g_i, s_i) \uparrow$, top grows more than middle
- Inequality increases, $\sigma(s_i) \uparrow$
- Overall growth reduction

Post Great Recession

- U turns back into L shaped curve, $corr(g_i, s_i) \downarrow$,
- Inequality stabilizes $\sigma(s_i) \simeq$
- Spike at the bottom

Summarizing

• Data suggests increase in *corr*(*s*, *g*) and inequality happen at the same time and associated with higher growth

From data to drivers

- Data on $corr(g, s), \sigma(g), \sigma(s)$, + model identifies micro factors: (1)
- Model identifies effect of micro factors on $E(g_{it})$, Γ_t : (2)
- Identify changes in macro factor \bar{g}_t residually: (3)

- Continuum of infinitely lived households, quarterly
- Small open economy
- Log of household *i* earning potential is

$$y_{it} = e_{it} + \alpha_i + f_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(\tilde{s}_{it}), \sigma_{\varepsilon}^2 g(\tilde{s}_{it}))$$

$$\alpha_i \sim N(0, \sigma_{\alpha})$$

$$f_{it} = h(\tilde{s}_{it}) + f_{it-1} \qquad h(s_{it}) = \bar{g}_t + \delta_t \frac{\tilde{s}_{it} - 1}{1 + \tilde{s}_{it}}$$

• e_{it} standard AR part, $\tilde{s}_{it} = \frac{e^{\alpha_i + f_{it}}}{E_i(e^{\alpha_i + f_{it}})}$ indicator of income rank

- · Continuum of infinitely lived households, quarterly
- Small open economy
- Log of household *i* earning potential is

$$y_{it} = e_{it} + \alpha_i + f_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(\tilde{s}_{it}), \sigma_{\varepsilon}^2 g(\tilde{s}_{it}))$$

$$\alpha_i \sim N(0, \sigma_{\alpha})$$

$$f_{it} = h(\tilde{s}_{it}) + f_{it-1} \qquad h(s_{it}) = \bar{g}_t + \delta_t \frac{\tilde{s}_{it} - 1}{1 + \tilde{s}_{it}}$$

• e_{it} standard AR part, $\tilde{s}_{it} = \frac{e^{\alpha_i + f_{it}}}{E_i(e^{\alpha_i + f_{it}})}$ indicator of income rank

• Variance of ε_{it} declining in \tilde{s}_{it} : $g(s) = \frac{1}{s}$ (Meghir and Pistaferri, 2004)

- Continuum of infinitely lived households, quarterly
- Small open economy
- Log of household *i* earning potential is

$$y_{it} = e_{it} + \alpha_i + f_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(\tilde{s}_{it}), \sigma_{\varepsilon}^2 g(\tilde{s}_{it}))$$

$$\alpha_i \sim N(0, \sigma_{\alpha})$$

$$f_{it} = h(\tilde{s}_{it}) + f_{it-1} \qquad h(s_{it}) = \bar{g}_t + \delta_t \frac{\tilde{s}_{it} - 1}{1 + \tilde{s}_{it}}$$

• e_{it} standard AR part, $\tilde{s}_{it} = \frac{e^{\alpha_i + f_{it}}}{E_i(e^{\alpha_i + f_{it}})}$ indicator of income rank

- Variance of ε_{it} declining in \tilde{s}_{it} : $g(s) = \frac{1}{s}$ (Meghir and Pistaferri, 2004)
- *α_i* is household fixed effect

- Continuum of infinitely lived households, quarterly
- Small open economy
- Log of household *i* earning potential is

$$y_{it} = e_{it} + \alpha_i + f_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(\tilde{s}_{it}), \sigma_{\varepsilon}^2 g(\tilde{s}_{it}))$$

$$\alpha_i \sim N(0, \sigma_{\alpha})$$

$$f_{it} = h(\tilde{s}_{it}) + f_{it-1} \qquad h(s_{it}) = \bar{g}_t + \delta_t \frac{\tilde{s}_{it} - 1}{1 + \tilde{s}_{it}}$$

• e_{it} standard AR part, $\tilde{s}_{it} = \frac{e^{\alpha_i + f_{it}}}{E_i(e^{\alpha_i + f_{it}})}$ indicator of income rank

- Variance of ε_{it} declining in \tilde{s}_{it} : $g(s) = \frac{1}{s}$ (Meghir and Pistaferri, 2004)
- *α_i* is household fixed effect
- f_{it} is growth factor, \bar{g}_t = common growth, δ_t = unequal growth
- When $\delta_t > 0$ rich grows faster than poor

Extensive margin

Household works iff

$$Y_{it}(1-\tau) > \phi_t$$

- ϕ_t is transfer income
- If household works: earnings = Y_{it} , if not earnings = 0
- Earning potential evolves when household does not work
- ϕ_t chosen to match constant fraction of non working households in each quarter (abstract from cycle)
- τ balances the gov. budget

Market Structures

- Complete markets, $C_{it} = \bar{Y}_t$
- Bond economy (Ayiagari, 94)

$$\begin{aligned} \max_{C_{it},b_{it}} E_t \sum_{t=0}^{\infty} \beta^t u(C_{it}) \\ s.t. \\ C_{it} &= b_{it-1}(1+r) + \max(Y_{it}(1-\tau),\phi_t) - b_{it} \\ b_t \geq \bar{b} \qquad b_0 \text{ given} \end{aligned}$$

• Autarky (HTM), $C_{it} = max(Y_{it}(1 - \tau), \phi_t)$

- Set $\delta = 0$ (no unequal growth), set parameters $\rho, \sigma_{\varepsilon}, \sigma_{\alpha}, \phi$ to match initial steady state (Ending 1977-78)
- Micro change: one time increase in δ_t
- Macro change: linear decline in common growth \bar{g}_t
- $\rho, \sigma_{\varepsilon}, \sigma_{\alpha}$ constant throughout, ϕ_t varies to keep fraction of non working constant

Identification of initial parameters

1. Curve is flat for rich, steep for poor

Identification of initial parameters

1. Curve is flat for rich, steep for poor

• Fixed effect (initial conditions): flat, Standard AR(1) (luck): steep

Identification of initial parameters

- 1. Curve is flat for rich, steep for poor
- Fixed effect (initial conditions): flat, Standard AR(1) (luck): steep
- Fixed effect + AR(1): cannot get (1)
- Variance of AR(1) declining with s: fixed effect more important for rich, AR(1) more important for poor → Match 1

Parameter driving changes

- $\delta \simeq 3.6\%$: $\tilde{s}_i = 2$ grows 1% per year faster than $\tilde{s}_i = 1$ (mean earnings)
- Large decline in common growth (from 4.6% to 1.7%)

Time paths: data and model

Unequal Growth over time: data and model

• Unequal growth gets change from L to U shape

Aggregate impact of unequal growth

- $\Gamma(\bar{g}_t, \delta_t) \Gamma(\bar{g}_t, \delta = 0)$: Small but sizeable (average 0.25% per year)
- Possibly larger with a more skewed (and realistic) earning distribution

Unequal growth v/s increasing risk

- Increase persistence and/or volatility of shocks (e.g. Heathcote, Storesletten and Violante, 2010) generate an increase in inequality
- These mechanisms do not generate changes in the growth distribution curve from L to U, i.e. systematic growth differentials between rich and poor
- Growth distribution point to increase in permanent dispersion not increase in risk (Bloom at al., 2017)

Unequal growth v/s increasing risk

- Increase persistence and/or volatility of shocks (e.g. Heathcote, Storesletten and Violante, 2010) generate an increase in inequality
- These mechanisms do not generate changes in the growth distribution curve from L to U, i.e. systematic growth differentials between rich and poor
- Growth distribution point to increase in permanent dispersion not increase in risk (Bloom at al., 2017)
- Alternative mechanisms also have much lower aggregate impact

Welfare costs of increase in unequal growth

- Compute equilibria and values in Complete Markets, Bond Economy and Autarky
- Compare ex-ante values of transition with and without unequal growth (keeping \bar{g}_t constant)

Welfare costs of increase in unequal growth

- Compute equilibria and values in Complete Markets, Bond Economy and Autarky
- Compare ex-ante values of transition with and without unequal growth (keeping \bar{g}_t constant)

	Market Structure		
Risk aversion (θ)	CM	BE	А
$\theta = 2$	-3.3%	+4%	+18.3%
$\theta = 4$	-1.6%	+28.5%	+63.6%

With IM, unequal growth costly because:

- Increase permanent income inequality (Bowlus Robin, 2004, Abbott and Gallipoli, 2019, Straub, 2019), hard to insure with bond
- Increase in risk at the bottom of the distribution, where it is more costly

Conclusions

- Highlight a statistical connection between inequality and growth
- Use it to identify changes in earnings formation:
 - Increase in unequal growth can account for patterns of inequality and has effects on growth (+0.25%) and welfare (-2%,-50%)
 - Large decline in common growth (-3%)

Conclusions

- Highlight a statistical connection between inequality and growth
- Use it to identify changes in earnings formation:
 - Increase in unequal growth can account for patterns of inequality and has effects on growth (+0.25%) and welfare (-2%,-50%)
 - Large decline in common growth (-3%)
- Open issues
 - What has driven the increase in unequal growth? SBTC, globalization, unequal access to education opportunities (Fogli and Guerrieri, 2020)?
 - What has driven the large decline in common growth?
 - How to share the unequal growth?