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1 Introduction

Over the past 50 years U.S. households have experienced changes in earnings/income dynam-

ics that have generated a large increase in earnings/income inequality (see, among others,

Katz and Murphy 1992 and Heathcote et al. 2010). The objective of this paper is to measure

the direct impact of these changes on aggregate growth and welfare.

Our starting point is the observation that aggregate earnings growth can be thought as

coming from two sources: the first is growth that is common (or evenly distributed) across the

earnings distribution, such as aggregate productivity growth. This source has, by definition,

no impact on the shape of earnings distribution, and on earnings inequality. The second

source is growth that is systematically different across the earnings distribution. This source

leads to a change in the shape of the income distribution and it can affect, at the same time,

income inequality and aggregate growth. This is the source that we refer to as “unequal

growth”. In order to identify unequal growth we present a statistical decomposition showing

that aggregate earnings growth can be written as the sum of two terms: the first is the

cross sectional (across households) covariance between earnings growth and earning levels,

the second is the (un-weighted) average of household/individual earnings growth.

The key insight is that the cross sectional covariance term is connected to aggregate

growth, but only depends on micro earnings dynamics, so that we can identify changes

in these dynamics from changes in this covariance term (and underlying correlations and

standard deviations). Once changes in micro dynamics are identified we can assess their

impact on aggregate growth. Moreover, by looking at the evolution of the second term of

the decomposition, we can also identify changes in the growth that is common across the

distribution.

Specifically we first document the evolution of the two terms of the decomposition for the

United States using micro data from the Panel Study of Income Dynamics (PSID) over the

period 1968-2018. The data shows that well known facts that growth is slowing down (see,

among others, Gordon (2012) or Summers (2015)) and that inequality is increasing. More
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importantly for our purposes the data shows that the correlation between earnings growth

and levels is negative but increasing over time: that is over time high earnings households

tend to grow faster.

Second we bring these data to a simple model of micro-founded growth à la Aiyagari-

Bewley-Huggett, modified to include a labor participation margin. In the model we introduce

changes in parameters governing income dynamics, and discipline these changes using stan-

dard studies on income micro dynamics and the observed aggregate moments, as they appear

in the statistical decomposition described above. The idea is closely linked to the analysis

by Gabaix et al. (2016), who frame the evolution of income inequality as a transition, from

one invariant distribution to a new one, triggered by a change in the fundamentals of the

household’s income process. Our key contribution relative to the previous literature is the

focus on the impact of these changes on aggregate growth.

The model shows that the changes in micro income dynamics that are consistent with the

decomposition involve sizeable a decline in the common component plus a changing unequal

growth across the income distribution, that is a distribution of growth opportunities across

the earnings distribution that over time has favoured (relative to earlier periods) high earnings

households. We then show that this changing unequal growth has resulted in a moderate

increase in aggregate output (about 20% over our sample size). The intuition for this result is

that since high earnings households comprise a large fraction of the aggregate, having them

gorw faster results in higher aggregate growth. So in a sense our first conclusion is that

the increase in inequality in the US over the past 50 years has created additional aggregate

growth that has partly offset the slowdown in the common growth component. We then

use our model to evaluate the ex ante welfare consequences of such changes, and our second

conclusion is that, in an economy with incomplete markets, the ex-ante welfare effect of the

increase in unequal growth is negative and sizeable. The reason is that the lower (relative to

earlier periods) growth of low earnings households leads to prolonged income stagnation for

these households, that lead to non participation and low consumption and welfare. These
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losses are only partially offset by the gains at the top.

Literature Review To be Completed Aiyagari (1994); Atkinson et al. (2011); Arkolakis

(2016); Benabou (1996); Benhabib and Bisin (2016); Chetty et al. (2014); Cortes et al. (2018);

Gabaix (2011); Guvenen et al. (2014, 2021); Gabaix et al. (2016); Huggett (1993); Jovanovic

(2014); Jones and Kim (2018); Kopczuk et al. (2010); Krueger and Perri (2004); Lucas (2000);

Luttmer (2011); Olley and Pakes (1996)

2 A micro decomposition of aggregate growth

In this section we present a simple statistical decomposition that connects aggregate income

growth to micro-level (household or individual) income growth, cross sectional income in-

equality, and the cross sectional correlation between income growth and income level. These

types of decompositions have been widely used in industrial organization to connect sectoral

productivity growth to productivity growth in individual firms (see, among others, Olley

and Pakes 1996). We find it useful to apply this decomposition to household level data (as

opposed to firms), because it connects aggregate growth with household income inequality,

which has a more direct and relevant welfare content than firms income inequality.

Let yit be level of income of household/individual i at time t. Let Γt+T be the economy’s

aggregate growth over an horizon T , which is

Γt+T =
E(yit+T )

E(yit)
= E

(
yit+T
yit

yit
E(yit)

)

where E(.) is the cross sectional average. Now define

gi,t+T ≡
yit+T
yit

, si,t ≡
yit

E(yit)

so that Γt+T = E(gi,t+T ·si,t) where gi,t+T is income growth of unit i and si,t the ratio between

income of unit i and average income. Then, using the definition of covariance and the fact
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that E(si,t) = 1 we get

Γt+T = cov(gi,t+T , si,t) + E(gi,t+T ) (1)

or equivalently

Γt+T = corr(gi,t+T , si,t)σ(si,t)σ(gi,t+T ) + E(gi,t+T ) (2)

Equation (1) suggests that what matters for aggregate growth is not only the (un-

weighted) average individual growth E(gi,t+T ) but the distribution of growth opportunities,

as summarized by cov(gi,t+T , si,t). The intuition for why this is the case is straightforward:

the higher the covariance, the faster higher income individuals grow; since they are high in-

come they contribute more to aggregate growth and aggregate growth is higher. Equation (2)

also suggests that cov(gi,t+T , si,t) is linked to three cross sectional moments that have an in-

tuitive economic interpretation. The first, corr(gi,t+T , si,t), is the correlation between level

and growth at the individual level. This measure captures the degree of mean reversion (or

economic rank mobility) in individual income dynamics. The second, σ(si,t) is the standard

deviation of si,t, which is essentially a measure of cross sectional income inequality. The

third, σ(gi,t+T ), is the standard deviation of the growth rate of individual income, which is

a measure of cross sectional income volatility. The equation suggests that changes in any of

these three quantities will be associated, ceteris paribus, with changes in aggregate growth.

It is important to note that this decomposition is a statistical identity, so, by itself, it cannot

be used to make causal inferences on growth and inequality. Nevertheless it provides a useful

starting point for assessing the impact of changing individual income dynamics on growth.

To see why this is the case, note that all the moments in the first term of equation (2) are

independent from the presence of a common growth factor, call it ḡ, that affects equally

the growth of all households. All the terms in the product only depend on heterogenous

individual income dynamics. The second term in equation (2) is instead potentially affected
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both by the common factor ḡ and by individual income dynamics. So the evolution of the

statistics in equation (2) will help us, with the aid of a simple statistical model, to identify

the impact on growth of the changes in income dynamics, that drive in income inequality,

from the changes in growth that are common across all households. For this reason the next

section uses a panel of micro data to document how the terms in the decomposition has

changed over time.

3 A decomposition of US growth: 1967-2018

Both equation (1) and equation (2) involve cross-sectional moments as well as moments

related to individual income growth, so in order to bring them to the data we need panel

data on household/individual earnings. Since our main focus is aggregate growth in the

United States we also want a panel which captures well aggregate US growth. For these

reasons we work with the Panel Study of Income Dynamics (PSID), which is a panel of

US households, selected to be representative of the whole population, collected from 1967

to 2018. Figure 1 reports aggregate growth in per capita labor income (earnings) both

in the PSID and the National Income and Product Accounting (NIPA).1 The solid lines

report the actual annualized growth (computed over a 4 years horizon), while the dotted

lines are polynomial trends. The figure shows that growth in PSID tracks growth in NIPA

quite closely, suggesting that the PSID sample is a good laboratory to study the connections

between individual income dynamics and aggregate growth.

Figure 2 also shows that the PSID captures well the patterns of US household income

inequality, as documented in from a much larger cross sectional survey, i.e. the March

Current Population Survey. The figure plots a measure of inequality which is relevant for

1The income measure in PSID is total wage and salary income plus farm income plus 50% of business
income for each household in the sample, divided by the total number of persons in the sample. The income
measure in NIPA is compensation of employees, wages and salaries disbursement plus 50% of proprietors
income, per capita. All measures are deflated using the PCE deflator. See the data appendix for more details
on data construction and for similar figures for different (narrower and broader) income measures. The reason
why we focus on labor income is that other categories of income are notoriously not well measured in the
PSID and in other micro surveys.
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Figure 1: Growth in labor income: NIPA and PSID
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our decomposition, that is the standard deviations of income (in ratio to mean income), for

10 deciles of the earnings distribution, derived from the two surveys.2 The figure shows that

both surveys capture the well known secular increase in income inequality in the United

States.

Since Figure 1 and Figure 2 show that the data in PSID capture well the evolution of

aggregate growth and inequality, we now proceed to compute the data equivalent in PSID

of equation (1) and equation (2). Figure 3 shows the growth decomposition suggested by

equation (1), where, in order to reduce noise due to measurement error in individual income,

we aggregate households in 10 deciles.3 The line labelled Γ reports aggregate growth rate

(annualized) over the 4 years following the x-axis date, for our PSID sample. The line labelled

2The income measure in both PSID and CPS is total wage and salary income plus 50% of household
business and farm income. Inequality measures are computed for households with heads between age 25 and
60. The average sample size in the PSID is around 4000 household per year, the size in CPS is 10 times
larger.

3Formally let It by the group of households who are in the ith decile of the income distribution in period

t. We define gi,t+T =
∑
i∈It

yi,t+T∑
i∈It

yi,t
, that is the growth rate of income in a given decile is computed using the

same group of households in t and t+ T . Our sample includes all households with head between age 25 and
60.
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Figure 2: Inequality in labor income: PSID and CPS

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

St
an

da
rd

 D
ev

ia
tio

n

CPS

PSID

E(gi) reports the (unweighted) average of the growth rate across deciles in our sample, and

finally the line labelled cov(gi,t+T , si,t) reports the covariance between the growth and the

normalized level.

Figure 3 shows that decline in aggregate growth is associated to a even larger decline

in the covariance between growth and level, cov(gi,t+T , si,t), while the un-weighted average

of growth rates in each decile, E(gi,t+T ), first declines and then slightly increases. Figure 4

further decomposes the trend in the covariance, using equation (2). The figure shows that

the fall in the covariance is the result of two off-setting trends. On one hand the correlation

between growth and levels (corr(gi, si)) , which, in the beginning of the sample is around−0.8,

becomes less negative. This would result, ceteris paribus, in an increase in the covariance.

On the other hand the fact that income inequality (σ(si)) has increased, together with the

fact that the correlation is negative, implies a decline in the covariance. Overall the increase

in inequality dominates and thus a reduction of the covariance is observed. Nevertheless

the increase (fall in absolute value) of the correlation is an important feature of the data.

In particular it shows that, together with the increase in inequality, US households have
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Figure 3: A decomposition of US aggregate growth
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experienced a substantial reduction in rank mobility, i.e. in recent years it is less likely for

low income households to experience strong growth.

To get a better understanding of the individual income dynamics generating these changes

in Figure 5 we plot the average 4-year growth in each decile (gi) v/s the ratio of the income

of the decile to average income (si). To average out the effects of the cycle, in the figure we

average this statistic over the first 5 years of the PSID sample and over the last 5 years of

the sample (for which we can compute growth the 4-year growth rate).4 There are several

features we would like to point out in the graph. The first is that the relation is negative in

both periods. Low income households tend to grow faster. This feature explains the negative

correlation (and covariance) between gi and si. The second feature is that over time there

has been a substantial change in this relation. The support of the (si) has expanded both

to the right and to the left, reflecting the increase in income inequality. Also growth (gi) in

recent years is slower for the top and mid deciles of the income distribution, while is faster

4The first 5 years are 1967, 1968, 1969, 1970 and 1971, while the last 5 years for which we can compute
growth are 2004,2006,2008, 2010 and 2012. We average the 4-year growth over five periods to smooth out
cyclical components in the growth in each decile.
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Figure 4: Decomposing the decline in covariance
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for the bottom deciles. This twisting of the curve explains, in an accounting sense, why

in recent years we observe a lower aggregate growth rate (4.5% v/s 1%), despite a higher

average growth of each decile (E(gi) has increased from 7.7% to 8.2%).

So far we have documented a series of facts relating growth and inequality in the United

States over the past 50 years. Aggregate growth has declined and inequality has increased.

The decline in growth has not been uniform across the income distribution, which results in

a lower covariance between level and growth. In the next sections we consider two simple

models of household income, to propose a theory of changes in income dynamics. Using

the facts with some simple theory will allow us to identify separately the changes that drive

inequality and growth (unequal growth) separately from changes that only affect growth

(common growth factors).
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Figure 5: Growth and ratios by deciles of the income distribution
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4 A Bewley-Aiyagari-Huggett model

We consider a standard Bewley-Aiyagari-Hugget small open economy, with few simple modi-

fications to the household income process, introduced to capture the features and the changes

in the income distribution documented above.5 We then explore the effect of these changes

on aggregate growth and on welfare. The economy is inhabited by a continuum of infinitely

lived households with standard preferences over consumption flows, denoted by

Et

∞∑
j=0

βtu(ct+j).

where β > 0 is the discount factor and u(.) is a standard utility function, which will

assume to be CRRA, i.e. u(c) = c1−θ

1−θ .

5The assumption of small open economy is made for computational convenience. For completeness we
will also solve a closed economy version of the model, where the interest rate is endogenous.
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4.1 Earning Potential

Each household in each period receives an idiosyncratic realization of its earning potential

Yit. We model earning potential as

log Yit ≡ yit = αi + eit + fit. (3)

The first component, αi, is a standard fixed effect, meant to capture permanent differences

in earning potential across households. We assume

αi ∼ N(0, σα)

The second component eit is a standard autoregressive process, which we model as

eit = ρeit−1 + εit , εit ∼ N(µε(sit), σ
2
ε(sit))

sit ≡
Yit

Ei(Yit)
, σ2

ε(sit) = σ2
ε

(
1− χsit − 1

1 + sit

)

Note that the parameter χ links the volatility of shocks of the income process, σ2
ε(sit), to sit,

the position of household i in the income distribution.6 This is motivated by a large body of

research which has documented that households at the bottom of the income distribution face

higher volatility in their earnings shocks (see, among others, Meghir and Pistaferri (2004)).

The third component of the income process, fit, which we name the growth factor, is going

to be the driver of the increase in income inequality and it evolves according to

fit = fit−1 + ḡt + δt
(sit − 1)

(1 + sit)
(4)

6Since exp(eit) is distributed log normally changing the volatility of eit also mechanically change its mean.
To eliminate this effect we also allow also the mean of the shocks µε(sit) to depend on sit and we set it so
that E(exp(εit)) does not vary across the income distribution. This is done to separate heterogeneity in
variance (captured in the autoregressive component of income) from heterogeneity in means, which in our
specification is captured by the fixed effects and by the growth factor.
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The important element in equation (4) is that earnings growth of household i can depend

on sit. First consider the case in which δt = 0. In this case each household experiences a

common income growth rate ḡt. In our experiments this is going to be the relevant case in

the initial and final steady state. During finite time transitions, however, we will allow the

parameter δt to be different from 0, and in particular to be positive, so that households with

income above the mean (sit > 1), will have faster growth than households with income below

the mean. As we will show below, when δt > 0, income inequality is increasing, so this will

be our modelling device to obtain the observed trends in income inequality.

4.2 Work choices and earnings

In each period each household with earning potential Yit has the option to work on the

market, and earn its potential minus taxes, or work at home and earn a transfer income

exp(φt), which grows at the common growth rate of the economy

φt = φt−1 + ḡt

When households work on the market they pay a flat tax that the government uses to

finance the transfer income. The process for earnings (before transfer and taxes) of household

i, which we denote by h(Yit) is thus given by

h(Yit) =

 Yit if Yit(1− τ) > exp(φt)

0 if Yit(1− τ) < exp(φt)

This feature of the model will generate household earnings that feature positive as well

as 0 values.
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4.3 The household problem

The household consumption saving problem is standard. In the baseline case we assume

incomplete markets so that each household can borrow and save using an uncontingent bond,

which pays an exogenously given interest rate r. Bond holdings have to be above a borrowing

constraint b̄ ≤ 0. The problem can then be written as

max
ct+j ,bt+j

Et

∞∑
j=0

βju(ct+j) (5)

s.t.

ct+j = bt+j−1(1 + r) + max(h(Yit+j), exp(φt+j))− bt+j, bt+j ≥ b̄ for every j

bt+j ≥ b̄ bt−1 given

4.4 Equal growth stationary equilibria

We first analyze stationary equilibria in which there is no unequal growth (δ = 0) and in

which all parameters, including the long run growth rate of the economy α are constant. An

equal growth equilibrium is a distribution of households over earning potential and asset of

µ(Y, b), plus household decision rule b′(b, Y ) satisfying the following conditions

1. The decision rules solve the household decision problem 5

2. Given the decision rules of the households the distribution is time invariant

3. The government budget constraint is satisfied

∫
τh(Y )dµ =

∫
φI(h(Y ) = 0)dµ

where I(.) is the indicator function.

Note that in an equal growth equilibrium, all individual and aggregate variables grow at

the constant rate of α, hence when we solve for it, we solve for equilibrium in an economy
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where all variables are detrended by the growth factor ft and where the discount factor β

and the interest rate on bonds 1 + r are suitably rescaled. 7

4.5 Unequal growth equilibria

We label unequal growth equilibria, the equilibria that arise during a transition from one

stationary distirbution to another. We assume the economy start in an stationary equilibrium

and at time t0, then experiences a change in parameters for N < ∞ periods. In particular

we will consider the case in which δt > 0 and in which αt is not constant for t ∈ [t0, t0 +N ].

After period t0 + N + 1, we assume that the economy settles to a constant growth rate ᾱ

and that δt = 0. An unequal growth equilibrium is a sequence of distributions µt(Y, b), and

a sequence of decision rules b′t(b, Y ), for t ∈ [t0,∞], satisfying the following conditions:

1. Given perfect foresight on the path of parameters changes, the decision rules solve the

household decision problem 5

2. The sequence of distributions are consistent with the decision rules

3. The government budget constraint is satisfied in every period

∫
τth(Y )dµt =

∫
φtI(h(Y ) = 0)dµt

Note that the assumption of perfect foresight might sound a bit extreme, as it implies

that high income households in 1975 (the date at which we will start our transition), learn

that they have faster growth for the next N years (which in the baseline calibration we set

to 40). For this reason we will also present results for unequal growth equilibria where agents

do not expect the change in parameters and are “surprised” every period.

7In particular the interest rate in the detrended economy is equal to 1+r
1+α and the discount factor, in the

case where utility is CRRA with risk aversion parameter equal to θ, is equal to β ∗ (1 + α)(1−θ)
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Table 1: Parameters in the initial stationary equilibrium

Income Process Parameters
Name Symbol Value
Variance of fixed effects σα 0.45
Persistence of shocks ρ 0.6
Baseline sd of shocks σε 0.21
Standard deviation gradient χ 0.75
Common growth ḡ 4.5%
Transfer income (% of average Y) φ 0.3
Tax rate τ 1.5%
Unequal growth δ 0

Preference Parameters
Discount Factor β 0.97
Risk Aversion θ 2

Other Parameters
Borrowing Constraint b̄ 0
Risk free rate r 2.5%

4.6 Calibration

Table 1 summarizes our parameter values for the equal growth equilibrium, which we calibrate

to match feature of the US economy in the late 1960s, before the increase in inequality

started. We now briefly describe how we set those. Starting first with the persistence of the

autoregressive part, ρ, we set it equal to 0.6, following previous quantitative studies that have

estimated AR(1) processes on household income process (see Aiyagari (1994), Heaton and

Lucas (1996)). We then set the parameter φ, which determines the threshold under which

an household does not work in the initial steady state to match a percentage of non working

households with head of age 25-60, in the years 1967-1968 of 5.3%. We define non working

those households for which annual hours worked by the head and spouse are less than 500.

We then set the parameter χ which determines how much the volatility of the shocks decline

with income level to be equal to 3/4σε which implies that a household at the low end of the

income distribution (s = 1/4) has roughly twice the variance of the shocks of a household in

the high end of the distribution (s = 2). This is broadly consistent with the figures reported

by Meghir and Pistaferri (2004).
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Figure 6: Initial steady state: data and model

To conclude we set the three remaining parameters, ḡ, σα and σε, to match the shape of

the relation between income growth and income levels in the first years of our sample (the

line labelled 1968-71 in Figure 5). Figure 6 shows the relation between growth and level

in the data and in the model. Our stylized income process capture this relation reasonably

well. The mean reverting component of the process is responsible for the overall negative

slope of the curve. The presence of fixed effects is necessary to generate the flat part of

the curve on the right, and the extensive margin decision plus the heteroscedasticity in the

volatility of income shocks is important to generate the spike in the growth of the first decile

of the distribution. The spike is generated by households in the bottom decile which have

low income and experience frequent transitions in and out of employment, and those two

features of the model capture those households. Finally we set the interest rate on bonds to

2.5% and the discount factor to 0.97, so to generate, in the initial steady state, a wealth to

income ratio of around 3.0.
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4.7 Results

Once we have calibrated the model to the initial steady state, we consider a transition period.

In particular we assume that starting in 1975 the parameter δ increases from 0, its steady

state value, to 0.03, during a period of 40 years. This implies, for example, that during that

period a household with earnings that are twice the mean (si = 2) grows 1% more per year

than a household with earnings at the mean (si = 1). After 40 years the parameter δ reverts

to 0. This parameter change is chosen so that the model exactly replicates the increase in

earnings inequality (the increase in standard deviation of the si) documented in figure 4. If

that was the only change in the transition the model would imply a share of non participant

households that would rise “too much” relative to the data. Low si households experience

negative growth in their potential income which induce them not participate, so the share of

non working households would rise to 13% (relative to 8.7% in our PSID sample). For this

reason in our baseline calibration we also change the time path for the transfer income φt so

that along the transition the model matches the increase in non-working households that we

observe in our sample (which goes from 5.3% in 1967-68, to 8.7% in 2014-16).8

4.7.1 Growth impact

Figure 7 shows the time paths implied by the model for all the terms of the decomposition in

equation (2) that do not depend on the aggregate growth factor ḡt. The figure suggests that

the increase in unequal growth captures well the type of income dynamics in the data. Note

that unequal growth is able to generate an increasing path for correlation between level and

growth, together with a declining pattern for covariance between the two variables. Initially,

as unequal growth takes place, it increases both the covariance and the correlation between

income levels and growth.

8In order to match the increase in non working households in the data the model calls for a decline in
the transfer income (from about 30% of mean income to about 18% of mean labor income). The reason is
that unequal growth would imply too much non participation, and we need a reduction in transfer income to
induce households to participate in the model as they do in the data. We view this decline in transfer income
as a reduced form way to capture an increasing incentive for labor force participation, which is particular
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Figure 7: Micro moments during the transition

18



Figure 8: Impact of micro changes on aggregate growth during transition

As time goes by, more unequal growth results in poor agents experiencing larger shocks,

because the variance of earning shocks increases when income falls, and because they move

more between working and not working. These larger shocks at the bottom result in higher

σ(si) and higher σ(gi) which result in falling covariance. Next we can asses the impact on

aggregate growth (separate from changes in the growth factor), which is reported in Figure 8.

The Figure shows that during the transition aggregate growth increases, but only to a modest

extent (from 4.5% to 4.9%).

Our final result involves backing out the changes in the common component of aggregate

growth. To do so, we allow the parameter ḡt to change over time so that in the last decade

of the transition, namely over the period 2004-2012, the average of growth rates by decile in

the model, E(gi), matches the E(gi) in the data. Figure 9 shows the result of this exercise: a

slow down of the common growth factor (from 4.5% to 1%), matched with the micro changes

of σ(si) and of cov(si, gi), provide a fairly accurate match of the evolution of earnings growth

relevant for women.
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Figure 9: Distribution of growth and shares by decile: 1967-1971 v/s 2004-2012

across the entire wealth distribution. Our estimate of the reduction in the common factor

of earnings growth is large, suggesting that changes such as technological slowdown (see, for

example Gordon 2012), or the decline in labor share (see, for example, Elsby et al. 2013)

have had an important effect on the evolution of the growth in labor earnings in the United

States. Our analysis suggests that this effect has been partly muted by the unequal growth

in earning dynamics.

4.7.2 Welfare

We conclude this section with an analysis of the welfare impact of “unequal growth”, that

is of the changes that are triggered by the new income dynamics. As is intuitive, the impact

crucially depends on two factors: the curvature in utility, which in this class of models

captures the social cost of consumption inequality, and the degree of market incompleteness.

In Table 2 we measure the welfare cost (in lifetime consumption equivalent units) of moving
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Table 2: Welfare costs after shocking the income process

Market Structure
Risk aversion (θ) CM BE A

θ = 2 -6.1% +2% +10.3%
θ = 4 -17.2% +28.5% +50.6%

from a steady state with equal growth, to an unequal growth equilibrium. In other words, the

number in the table measure the percentage of lifetime consumption a household, under the

veil of ignorance, is willing to give up to avoid the period of unequal growth. We consider two

values of the risk aversion (2 and 4) and three market structures, complete markets (CM),

bond economy (BE, the economy described above) and autarky (A), the economy in which

household simply consume their (after transfer) earnings. In the bond and the complete

markets economy the welfare numbers are computed assuming that households are surprised

by changes in the growth factor every period (but expect them to be permanent).9

The table shows first that in complete markets unequal growth produce welfare gains.

The logic is obviously that the benefits of the higher aggregate growth are shared among all

households. When markets are incomplete, however, high earnings household benefit and low

earnings lose, and this results in ex-ante welfare losses, that with curvature equal to 4 can be

very substantial. It is useful to think of the losses in incomplete markets as arising from two

features. The first is that poor agents experience negative growth and thus are stuck with

permanently lower component of their income. The other is that with lower income, they

also experience more volatile shocks. In financial autarky both these features affect welfare

negatively, hence the large welfare losses. In the bond economy agents can (partly) insure

against the more volatile shocks, but still suffer the adverse consequences of the permanently

lower component of income and that explain why the welfare losses in the bond economy are

also quite high. Another way to understand the large welfare losses in the bond economy is

9In the autarky economy the welfare impact is independent on whether or not the changes in the income
process are anticipated.
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that the process of unequal growth causes increase dispersion in “permanent income” ( see

Bowlus and Robin (2004), Abbott and Gallipoli (2019) and Straub (2019)) which translates

in dispersion in consumption and in welfare losses. Note also that with when curvature is

high (θ = 4) the gap in the welfare impact of unequal growth between complete markets

and incomplete markets gets very large. This is not surprising, but it highlights that a

period of unequal growth increases the social value of better risk sharing or social insurance

mechanisms.

5 Conclusions

We have shown that a statistical process for household earnings that involve more “unequal

growth” , i.e. high earnings households growing (over time) faster and low earnings growing

(over time) slower can account well for the evolution of the US earnings distribution over

the past 50 years. We have also shown that more unequal growth has a mild (between 0.5

and 1% per year) positive effect on aggregate growth, and a potentially very large (as high

as 50% of lifetime consumption) negative welfare effect, when markets are incomplete. The

natural next question is what is the driver of this increase in unequal growth? For some

times there has been a lot of very exciting work that thinks about sources of unequal growth

(see, for two recent examples of such work, Fogli and Guerrieri 2019, Moll et al. 2019 ), and

we believe that integrating our framework to these works can help us understand better the

aggregate consequences of changes in the formation of individual earnings. We also find that,

with the increase in unequal growth the social value of better (private or public) insurance

mechanisms increase tremendously, and thus another relevant research direction is how to

improve such mechanisms.
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A A Pareto-model with random growth opportunities

This section presents a simple aggregative model of the evolution of the income distribution.
The primitive of the analysis is the individual income process, which is exogenous. The
thought experiment is to analyse a transition, starting from one invariant distribution, then
assuming a change of the fundamental process, and studying the convergence towards the
new invariant distribution. The spirit of this exercise is analogue to the one developed by
Gabaix et al. (2016). The model is deliberately simple to be analytically tractable. We will
use this feature to match the model to the observed cross sectional moments before the shock,
which we assume to occur in the early 70s, and abut 35 years in the process, in the early
2000s.

Setup. Assume a cross section of agents, each of which can matched with a project pro-
ducing an income. Agents without a project have income y0 and are are matched with a
project at rate ϕ. New projects start at income y1, which grows at rate γ until the project
is destroyed, which happens at rate δ. Thus a project surviving t periods yields the income
y(t) = y1e

γt. Let p = {0, 1} denote the agent’s state (with or without a project).
In steady state the economy will have a fraction ω ≡ δ/(ϕ+ δ) ∈ (0, 1) of agents with no

projects, i.e. income y0. Noting that the distribution of project durations is exponential, i.e.
it has density f(t) = δe−δt, we compute the density of y by change of variables using y(t)
gives

h(y) =
α yα1
y(α+1)

where α ≡ δ

γ
(6)

which is a Pareto distribution with CDF H(y) = 1 −
(
y1
y

)α
. For the distribution to have a

finite mean (income) it must be that α > 1 i.e. δ > γ, in which case we have that the mean
income (conditional on p = 1) is

E
(
y
∣∣∣p = 1

)
= y1

α

α− 1
, median: y1 2(1/α)

Thus the mean income in the population is

E (y) = y0ω + y1(1− ω)
α

α− 1
(7)

which is decreasing in α and decreasing in ω.

Steady state moments Now we compute E(gi|y, T ) the expected income growth for an
agent with income y over a time period of length T . Let M(y, T ) ≡ E(y(T )|y(0) = y) denote
the expected value of income in T periods for an agent with current income y. This is

M(y, T ) = ye(γ−δ)T +

∫ T

0

δe−δsm(T − s)ds (8)

where m(T ) ≡ E(y(T )|y(0) = y0) is the expected value of income T periods from now for an
agent whose current state is p = 0 (i.e. in a no growth state, hence with income level y = y0).
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Some analysis reveals that

m(T ) = y1

∫ T

0

ϕ θ0(s)e
(γ−δ)(T−s)ds+ y0θ0(T ) where θ0(s) =

δ + ϕe−(ϕ+δ)s

ϕ+ δ
(9)

where θ0(s) is a type of “survival-statistic” that, conditional on an agent being in state p = 0
at time zero, gives the probability that the agent is still in that state after s periods (this
takes into account the possibility of leaving the state and coming back to it).10 Notice that
the steady state fraction of agents at p = 0 defined above, namely ω = δ/(δ + ϕ), obtains in
the limit as lims→∞ θ0(s) = ω. We get

m(T ) = y1

(
α− ω
α− 1

+
ϕγ

ϕ+ γ

(
e−(ϕ+δ)T

ϕ+ δ
− e−(δ−γ)T

δ − γ

))
+ (y0 − y1)

δ + ϕe−(ϕ+δ)T

ϕ+ δ
(10)

where we used α ≡ δ/γ. Notice again that as T → ∞ the expected income level converges
to the average cross sectional income computed above.

Using Equation (10) into equation (8) we thus have an analytic expression to compute
the expected income growth in the cross section over a period of length T , which is given by

E(gi, T ) ≡ ω
m(T )

y0
+ (1− ω)

∫ ∞
y1

h(y)
M(y, T )

y
dy (11)

A.1 A permanent shock and the distribution of incomes during
the transition

Suppose at time t = 0 the fundamental parameters ϕ, δ and γ change to new values ϕ̃, δ̃ and
γ̃. In particular assume that the new success rate ϕ̃, as well as failure rates δ̃ applies for all
t > 0. The new growth rate γ̃ will only apply to successful project initiated after t = 0.

In this section we solve in closed form the PDE for the Kolmogorov Forward equation to
compute the density of income levels during the transition. In particular, we assume that
right after the shock the new projects are created at rate ϕ̃ and grow at rate γ̃, die at rate
δ̃, so that the new steady state fraction of agents with no project will be ω̃ ≡ δ̃/(ϕ̃+ δ̃). We
also assume that existing active projects will fade out at the old rate δ, so that t periods
after the shock there will be a mass of survivors equal to (1− ω)e−δt.

The fraction of agents with p = 0 after t periods in the transition is given by the sum of
the new and old survivors, given by the function

ω̃(t) = ω̃ + (ω − ω̃ + χ) e−(δ̃+ϕ̃)t − χe−δt where χ ≡ (δ̃ − δ)(1− ω)

ϕ̃+ δ̃ − δ
(12)

Notice that after the shock the agents with the project (i.e. with p = 1) come in 2 types.
Agents with a new project and agents with the old project, and that ω̃(0) = ω while as

10This is easily derived as the limit of the discrete time flow accounting. Let ∆ > 0 be the time period
length, then θ0(s+ ∆) = (1−∆ϕ)θ0(s) + (1− θ0(s))δ∆. Using a first order expansion an taking the limit for
∆ → 0 gives the ode θ′0(s) = δ − (ϕ + δ)θ0(s) with boundary condition θ0(0) = 1, which gives the equation
in the text.
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t→∞ then ω̃(t)→ ω̃.
The domain for y for the new type is y ∈ (y1, yM(t)) with yM(t) = y1e

γ̃t where t is the
time elapsed since the shock. Let f̃(y, t) denote the density of y at time t conditional on
p = 1 and the project being a new variety. We want to characterize the density f̃(y, t) during
a transition towards the new invariant Pareto distribution. Note that the support of this
distribution is (y1, y1e

γ̃t) where y1 is the injection point where mass flows in at a rate ϕω̃(t).
The density obeys f̃(y, t) the KFE

∂

∂t
f̃(y, t) = − ∂

∂y

(
f̃(y, t)γ̃y

)
− δ̃f̃(y, t) (13)

After t periods the mass of agents with an active project of the new type, with y ∈
(y1, yM(t)) with yM(t) = y1e

γ̃t, is given by η(t) which is11

η(t) = 1− ω̃(t)− (1− ω)e−δt (14)

Next we use an eigenvalue-eigenfunction decomposition to solve the above PDE by sepa-
rating its variables. Conjecture that the solution is separable

f̃(y, t) =
∞∑
j=1

eλjtfj(y)

then the KFE gives

λjfj(y) = −f ′j(y)γ̃y − (δ̃ + γ̃)fj(y) for j = 0, 1, 2, ....

So that fj(y) = Ajy
−
(
1+

δ̃+λj
γ̃

)
. We solve for λj, Aj by ensuring the density satisfies mass

preservation as given by ∫ y1eγ̃t

y1

f̃(y, t)dy = η(t) (15)

This gives

∞∑
j=0

Aj γ̃

δ̃ + λj
y
−
δ̃+λj
γ̃

1

(
eλjt − e−δ̃t

)
= 1− ω̃ − (ω − ω̃ + χ)e−(δ̃+ϕ̃)t − (1− ω − χ)e−δt (16)

and matching coefficients gives the eigenvalue-eigenfunction pair associated to the invariant
distribution λ0 = 0, A0 = (1− ω̃)α̃yα̃1 , and two more eigenvalue-eigenfunction pair associated

to the transition, λ1 = −δ, A1 = −(1− ω − χ) (δ̃−δ)
γ̃
y

(δ̃−δ)
γ̃

1 and λ2 = −(δ̃ + ϕ̃), A2 = (ω − ω̃ +

11This is immediate since the total mass of active projects at time t is given by 1 − ω̃(t), from which we
substract the mass of old projects equal to (1− ω)e−δt.
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χ) ϕ̃
γ̃
y
− ϕ̃
γ̃

1 while all other pairs {λj = Aj = 0} for j = 3, 4..., so that we have

f̃(y, t) = (1− ω̃)
α̃yα̃1
y1+α̃

− e−δt(1− ω − χ)

(δ̃−δ)
γ̃
y

(δ̃−δ)
γ̃

1

y1+
(δ̃−δ)
γ̃

+ e−(δ̃+ϕ̃)t(ω − ω̃ + χ)

ϕ̃
γ̃
y
− ϕ̃
γ̃

1

y1−
ϕ̃
γ̃

(17)

The fading-out of old active projects. As mentioned we assume that after the shock
the mass of survivors with the old project continues to grow at the old rate γ and gradually
fades out at the old rate δ. At time t this mass is distributed over the domain y ∈ (ym(t),∞)
where ym(t) = y1e

γt.
The transition density of the active (p = 1) old agents, given by h(y, t), obeys the kol-

mogorov forward equation

∂

∂t
h(y, t) = − ∂

∂y
(h(y, t)γy)− δh(y, t) (18)

which is analogue to equation (13), with mass-preserving constraint∫ ∞
ym(t)

h(y, t)dy = (1− ω)e−δt (19)

It is easy to verify that the density function (1− ω)h(y), where h(y) is the invariant density
function given in equation (6), associated to the zero eigenvalue, satisfies the above equations.

Density of income for active (p = 1) projects t periods after the shock. Hence t
periods after the shock the density over the interval (y1,∞) is

f(y, t) = f̃(y, t)In(y) + (1− ω)h(y)Io(y) for y ∈ (y1,∞) (20)

where 
In(y) = 1 if y ∈ (y1, yM(t)), In(y) = 0 otherwise

Io(y) = 1 if y ∈ (ym(t),∞), Io(y) = 0 otherwise

Some algebra shows that
∫∞
y1
f(y, t)dy = 1− ω̃(t) for all t.

A.2 Moments during transition

The mass of agents without a project in the cross section is equal to ω = δ/(δ+ϕ) before the
shock, while t periods after the shock the mass of agents at y0 is given by ω̃(t) in equation (12),
where ω̃ = δ̃/(δ̃ + ϕ̃) is the new steady state value as t→∞.

Assume also that the income for an agent without a project evolves exogenously, t periods
after the shock, as y0(t), with y0(0) = y0. We will still assume that whenever the agent exits
the p = 0 state, she will start from income y1. Thus y1 is the (time invariant) “initial income”
agents get when they start a new project. Thus the aggregate income of the economy, t
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periods after the shock is

E(y, t) = ω̃(t)y0(t) +

∫ ∞
y1

y f(y, t) dy (21)

where f(y, t) was given in equation (20).
Now we compute E(gi|y, T, t) the expected income growth over a time-period of length T ,

computed t periods after the shock, for an agent who has income y. We begin by computing
the expected income levels conditional on the current y in a horizon of T periods.

If the agent is in state p = 0 then the expected value of income over a time period T is
computed following the logic used for the steady state in equation (9), with the difference
that the formula will now use the new parameters and that the income of the poor (p = 0)
at time t is y0(t):

m̃(t, T ) = y1

∫ T

0

ϕ̃ θ0(s)e
(γ̃−δ̃)(T−s)ds+ θ0(T )y0(t+ T ) where θ0(s) =

δ̃ + ϕ̃e−(ϕ̃+δ̃)s

ϕ̃+ δ̃
(22)

where θ0(s) denotes the probability that an agent who does not grow (p = 0) at time s = 0
is in the same state after s periods.

We get the closed form expression:

m̃(t, T ) = y1

(
α̃− ω̃
α̃− 1

+
ϕ̃γ̃

ϕ̃+ γ̃

(
e−(ϕ̃+δ̃)T

ϕ̃+ δ̃
− e−(δ̃−γ̃)T

δ̃ − γ̃

))
+ (y0(t+ T )− y1)

δ̃ + ϕ̃e−(ϕ̃+δ̃)T

ϕ̃+ δ̃

(23)
where we used α̃ ≡ δ̃/γ̃ and ω̃ ≡ δ̃/(δ̃ + ϕ̃).

Note that t periods after the shock there is a mass of agents in state p = 1 which keeps
growing at rate γ and terminate operating at rate δ. The expected value of income over an
horizon T for these “old” agents with current income y is

M o(y, t, T ) = ye(γ−δ)T +

∫ T

0

δe−δsm̃(t+ s, T − s)ds (24)

Notice that this statistic depends on t, the time elapsed since the shock, only through the
income of the poor y0(t) which depends on “calendar” time t and is one component of the
function m̃(t, T ).

The new projects initiated after the shock grow at rate γ̃. After t periods since the shock
occurred the expected value of income for an agent with a new project and current income
y, over an horizon T , is

Mn(y, t, T ) = ye(γ̃−δ̃)T +

∫ T

0

δ̃e−δ̃sm̃(t+ s, T − s)ds (25)

The expected cross-sectional income growth varies with t, the time elapsed since the
shock, because of the time varying composition of the agents (e.g. the agents with the old
projects growing at rate γ will gradually disappear) and because the income of the poor y0(t)
(may) change.
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Table 3: Target moments and model parameters

1967-1973 2000-2010

data model data model
std(si) 0.62 0.53 0.94 0.87
cov(gi, si) -0.03 -0.02 -0.06 -0.05
std(gi) 0.07 0.06 0.13 0.15

Model calibrated parameters
δ 0.16 0.09
γ 0.064 0.067
ϕ 3.9 1.1
y0/y1 0.25 0.25

After t periods the expected growth rate of income over an horizon T is

E(gi, t, T ) ≡ ω̃(t)
m̃(t, T )

y0(t)
+

∫ y1e
γ̃t

y1

f̃(y, t)
Mn(y, t, T )

y
dy +

∫ ∞
y1eγt

h(y, t)
Mo(y, t, T )

y
dy (26)

Notice that E(gi, t, T ) is a forward looking variable (expectation over future horizons). It
jumps the moment the shock hits since agents know the new parameters will apply from that
moment onwards. An identical logic is used to compute higher moments such as the variance
of growth rates.

Using the equation (21) for the aggregate output dynamics and equation (26) it is also
straightforward to compute the expected value for the covariance between gi and si after t
periods since the shock occurred.

A.3 A quantitative exercise

Next we parametrize the model using the data form the early 70s and the recent data. The
thought experiment is that the economy was initially in a steady state, when a shock to the
fundamental parameters of the income process occurred. We first parametrize the model to
fit the steady state of the 1970s. We then choose the post-shock parameters assuming they
changed in the early 70s and that, after t = 35 years (in the early 2000s), they generate the
moments we see in the data.

To bring the model to the data we assume that the individual growth rates are made
of a common trend component, ḡt, and of an individual specific component gi. The growth
decomposition of Section 2 implies that Γt = ḡt +E(gi) + cov(si, gi). In a steady state, where
the shape of the income distribution is constant, then Γt = ḡt and E(gi) = −cov(si, gi).

Without loss of generality we normalize y1 = 1 and use three set of moments to calibrate
the remaining model parameters {δ, γ, ϕ, y0}. Since our model is mute about the common
growth factor we only use moments that do not depend on it. We interpret ω as the fraction
of households with a near zero income, a fraction which is about 3% of the population in
the early 70s and almost doubles in the early 2000. The value of y0 is chosen to match the
growth rate of incomes observed in the first decile, a value which is high since it involves
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Figure 10: Cross sectional patterns in data vs model
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some households jump from y0 to y1. Second, we choose δ to match the probability that a
household in the top decile remains in the same decile after 4 years. Since the probability
of remaining in the top decile moves from about 0.52 to 0.68 from the early 1970s to the
early 2000s, we use δ ≈ 16% and δ̃ ≈ 9% for each of these periods, respectively. The targets
for the fraction of agents at y0, respective 3% and 6% in each period, allow us to retrieve
information on ϕ using ω = δ/(ϕ+ δ) and using equation (12) for the early 2000s assuming
t = 35. Finally we choose a value for γ in the 1970s to match the inequality, as measured by
std(si) and to match the observed cov(si, gi), where both moments are measured at the level
of incomes deciles, indexed by i = 1, ..., 10.

Table 3 reports the targeted moments, in the data and as fitted by the model, and model
parametrization. To fit the moments in the early 2000 we assumed that the shock (change
in the fundamental parameters) occurred in 1970, so that the time elapsed since the shock in
the early 2000 is t = 35 years. We then used the transition moments discussed in Section A.2
to choose the parameter γ̃ to best match the targeted model moments.

Figure 10 plots the cross sectional patterns implied by the model over these two target
periods. It is apparent that the model requires a longer Pareto tail to fit the more recent
data, something which is achieved by picking a lower value for α̃ = δ̃/γ̃. As shown in Table 3,
the reduction occurs because the duration of projects increases (lower δ̃ < δ) and the growth
of the active project increases relative to the old ones (γ̃ > γ).

Figure 11 displays the Aggregate dynamics during the transition implied by this model
calibration. The transition unfolds slowly and takes about 60 years. The aggregate time
series displays an initial oscillation, due to the changing mass of agents at y0, and is then
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Figure 11: Aggregate dynamics during the transition
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followed by a long period in which both output and inequality increase. Over the first 40
years inequality increases by an amount that is comparable to the one seen in the data, and
the average output effect of these changes is an average 0.8% growth per year over this period.

A.4 Welfare assessment under incomplete markets

As a preliminary (and worst case) assessment we consider the case of autarky, for which a
simple analytic solution exists, next we consider a bond economy. Under autarky there are
no financial markets and consumption equals income. The value of the consumption stream
of an agent without project p = 0 is

v0(δ, γ, ϕ) = E
(∫ ∞

0

e−ρtu(y(t))dt |y(0) = y0, p = 0

)
(27)

where ρ is the intertemporal discount rate, and the arguments δ, γ, ϕ stress that the value
depends on this triplet of fundamental parameters. Likewise, let v1(y; δ, γ, ϕ) denote the
value for agent with an active project, so that p = 1, income level y and parameters δ, γ, ϕ,
which is

v1(y; δ, γ, ϕ) = E
(∫ ∞

0

e−ρtu(y(t))dt |y(0) = y, p = 1

)
(28)

Notice that v0 and v1 solve the following HJB equations

ρv0 = u(y0) + ϕ(v1(y1)− v0) , ρv1(y) = u(y) + v′1(y)yγ + δ(v0 − v1(y))
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Table 4: Welfare costs after shocking the income process

Market Structure
Risk aversion (θ) CM BE A

θ = 2 -13% -1.4% + 8%
θ = 4 -12% -1.0% + 24%

Ex-ante welfare is expressed in consumption equivalent units, relative

to consumption in the 1970. As for the Bewley model the computation

assumes a time discount ρ = 0.03 and, for the bond economy, a risk free

bond with gross return R = 1.025.

Assume u(y) = y1−θ

1−θ , as done above. Guess the solution is v1(y) = A + Byβ, substitute
and match coefficients to get

v0(δ, γ, ϕ) =
ρ+ δ

(ρ+ δ + ϕ)ρ(1− θ)

(
y1−θ0 +

ϕy1−θ1

ρ+ δ − (1− θ)γ

)
(29)

and for v1(y)

v1(y; δ, γ, ϕ) =
1

ρ(1− θ)

(
δy1−θ

0

ρ+ δ + ϕ
+

δϕy1−θ
1

(ρ+ δ + ϕ)(ρ+ δ − (1− θ)γ)
+

ρy1−θ

ρ+ δ − (1− θ)γ

)
(30)

We use the parametrization of Table 3 to develop a simple welfare assessment under
autarky. We construct the ex ante welfare measure for the 1970s using the parameters of the
left side of the table and compute the ex ante welfare using the steady state distribution of
incomes for that period, which we denote by F70(y), so that the ex ante welfare measure is
W70 = ω70v0(δ, γ, ϕ) + (1− ω70)

∫
y
v1(y; δ, γ, ϕ)dF70(y).

We compare this welfare measure with the ex-ante welfare measured right after the per-
manent shock to the income process (since we assume autarky, the issue of whether the path
implied by the shock is known is immaterial). For an agent with p = 0, the welfare after the
shock is v0 evaluated at the new parameters. The value for an agent with p = 1 and income
y solves (ρ+δ)ṽ1(y) = u(y)+ ṽ′1(y)yγ+δv0(γ̃, ϕ̃, δ̃) where the notation stresses that the value
v0 depends on the new parameters (indexed by a tilde) while the function ṽ1 (for the active
projects at the time of the shocks) continue to obey the old law of motion given by δ, γ. This
gives

ṽ1(y; δ, γ) =
δv0(δ̃, γ̃, ϕ̃)

ρ+ δ
+

y1−θ

(1− θ) (ρ+ δ − (1− θ)γ)
(31)

The ex-ante welfare right after the shock is thus given by W̃70 = ω70v0(γ̃, ϕ̃, δ̃) + (1 −
ω70)

∫
y
ṽ1(y; δ, γ)dF70(y).

Table 4 reports some preliminary welfare results. Under complete markets (CM) the
total welfare effect is positive (a negative welfare cost) since the changes in the shape of the
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distribution that occur during the transition increase the average level of output.12 The next
two tables report the welfare costs, measured in consumption equivalent units, relative to
the state state before the shock. under a regime of financial autarky (A), the third column
of the table, the change in the fundamental parameters leads to a welfare loss on impact in
the order of about 8% of permanent consumption when the agent’s risk aversion is θ = 2.
This welfare loss originates since under the parameters it becomes harder for agents to come
up with a successful project (ϕ̃ < ϕ), so that the prospects of being stuck at p = 0 makes
agents ex-ante unhappy. Increasing the risk aversion of agents to θ = 4 further decreases the
ex-ante desirability of the new regime. The table shows that the impact effect now leads to
a larger welfare reduction (-24% in consumption equivalent terms).

The welfare effects under autarky are obviously an extreme example of incomplete mar-
kets. The middle column of Table 4 reports the preliminary results in an economy that allows
agents to self-insure using a a riskless bond with gross return R and a borrowing constraint
at zero, so that each agent assets is a ≥ 0. This economy has a 2 dimensional state space,
given by {a, y}. We solve numerically for the value function v0(a, y0) and v1(a, y) where
y ∈ (y1,∞), where the subscript indicates whether the agent income grows (p = 0 vs p = 1).
We compute the invariant distribution over income and assets numerically, and develop sim-
ple welfare analysis as done above. It is evident that the bond allows the agent to self-insure
against adverse income shocks, so that the overall welfare outcomes are superior to autarky.
in spite of the fact that under the new income process the welfare of agents without a job
(p = 0) is much smaller than before, the ex-ante welfare effect of the shock is to increase
welfare for θ = 2 and θ = 4. A large risk aversion equal to θ = 6 is necessary to yield a
slightly negative ex ante welfare effect on impact (not reported in the table).

B Identification of ρ and gi

The income of household in decile i follows the process yit = αi + eit + fit described in
equation (3), where eit = ρ ei,t−1 + εit. Simple algebra implies the income growth rates

∆yi,t = εi,t + (ρ− 1)
∞∑
k=0

ρkεi,t−1−k + ḡi,t where ḡi,t ≡ fi,t − fi,t−1

Let us focus (for simplicity, I think this can be extended) to incomes that did not change
decile during the observation period (stayers).

Assume that the decile specific income growth ḡi,t = ĝt + ḡi is made of a time dependent
aggregate component (e.g. aggregate TFP) and of a decile specific component. The key
assumption is that the stochastic components of ĝt and ḡi do not display serial correlation.

12The effect under complete markets is computed assuming the representative agent’s consumption equals
the mean level of output. Further, we assume that, relative to the baseline, the transition increases
causes the mean output level to grow at the gross rate ḡ for T periods. The present value of utility is

v̄(ḡ) =
∑T
t=0 β

t y(t)1−θ

1−θ where y(t) = y(0)ḡt. This gives v̄(ḡ)
v̄(1) =

(1−(βḡ1−θ)
T

)(1−β)

(1−βḡ1−θ)(1−βT )
from which the consumption

equivalent is readily derived.
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It then follows that

cov (∆yi,t,∆yi,t−1) = −
(

1− ρ
1 + ρ

)
σ2
ε(i, t)

Note moreover that

var (∆yi,t) =

(
2

1 + ρ

)
σ2
ε(i, t)

Running the following regression across all deciles (limited to the incomes that do not
move across deciles, the stayers)

∆yi,t = α + β∆yi,t−1 + γi + δt + νi,t

where γi is a decile dummy and δt is a time dummy. The regression will give the asymptotic
regression coefficient β = −

(
1−ρ
2

)
and γi = (1−β)ḡi It is also straightforward that a regression

of the income growth ∆yt on the previous period income level yt−1 gives a regression coefficient
equal to − (1− ρ) which is the negative slope we see in the graphs where growth is plotted
vs the decile income measure.
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