World Financial Cycles

Yan Bai Patrick Kehoe Fabrizio Perri
University of Rochester Stanford University Minneapolis Fed

October 2019
Motivation

• Goal: understand determinants of spreads in emerging markets

• Existing literature on sovereign debt:
 • Empirically, volatile common component of spreads across emerging markets
 • World financial cycle drives emerging markets bond spreads (Longstaff, Pan, Pedersen, Singleton, 2011)

• Puzzle for existing literature:
 • Output growth is much less correlated than spreads
 • Hard to explain observed high correlation of spreads
Cross section of Spreads and Growth rates

Changes in spreads

GDP growth rates

- Puzzling for standard sovereign debt models
The World Financial Cycle

What drives the World Financial Cycle?

- Common shocks, other than output growth, in emerging countries?
- Shocks originating in developed countries?

Develop quantitative model of world financial cycle

- Allow for these types of shocks
- Use real and financial data to identify importance of each

Our analysis relevant for current heated debate on financial spillovers from North to South
Ingredients

- Large, patient country (north) and many impatient, small open economies (south)

- Incomplete financial markets: uncontingent long-term bonds with default risk

- Spreads affected by:
 - Growth rate shocks independent across South (standard)
 - Shocks to long run growth prospects and volatility correlated across South (new)
 - Shocks to long run growth prospects and volatility in North (new)

- All countries risk averse with Epstein-Zin preferences
Key Idea

• Common component of southern spreads increase when:
 • Long run growth prospects across Southern countries fall
 • Long run growth prospects in North fall
 • Volatility in North and South increases

• Important features of long run growth prospects and volatility:
 • Can be quite correlated without output being very correlated

• Identification: use model and data on North and South stock markets, growth rates and spreads to infer time series for shocks
Main Application

Use model to back out shocks that account for three episodes:

• 1998-2001: Emerging mkts crises
 High spreads, booming North stock market

• 2003-2007: Great spread moderation
 Declining spreads, stable North stock market

• 2008-2009: Great recession
 Spike in spreads, collapse in North stock market

Use the backed out patterns of shocks to evaluate the key drivers of the world financial cycle
Literature

Roadmap

• Data

• Model

• Show model can match key features of data

• Assessing the role of world cycle in three episodes:
 • Emerging mkts crises (1998-2001)
 • Great spreads moderation (2003-2007)
 • Great recession (2008-09)
Data

- 23 Emerging countries with at least 15 yrs of monthly spread data (EMBI Global) and quarterly GDP over 1994-2019

- Argentina, Brazil, Bulgaria, Chile, China, Colombia, Dominican Republic, Ecuador, El Salvador, Hungary, Malaysia, Mexico, Nigeria, Panama, Peru, Philippines, Poland, Russia, South Africa, Turkey, Ukraine, Uruguay, Venezuela.

- Similar data as Longstaff et al. (2011) and Aguiar et al. (2016)
Suggest important role of common component
3 stylized facts hard to explain with standard models

- Spreads higher than default frequency
- High volatility of spreads
- Across emerging markets spreads co-move much more than GDP
1 & 2: Average spreads, defaults and Spreads Volatility

Mean Across i Median Across i

- Average Spread 480 bp 350 bp

- Default frequency $= \frac{\# \text{ years with at least } 1 \text{ default}}{\text{total yrs in sample}} = 210$ bp

- Standard Deviation of spreads: $\geq 2\%$
3. Cross Correlation of Δ Spreads$_i$ and Δ GDP$_i$

- Across emerging mkts much stronger co-movement in spreads than GDP
- All pairs of emerging mkts feature positive comovement
Model

- One North country and a continuum of small South Countries
- One good, pure exchange economy
- Discount factor for North β_N, for South β_S with $\beta_N > \beta_S$
- All countries have Epstein-Zin preferences

$$W_{it} = \left\{ (1 - \beta) c_{it}^{1-\rho} + \beta_i \left[E(W_{it+1}^{1-\theta}) \right]^{\frac{1-\rho}{1-\theta}} \right\}^{\frac{1}{1-\rho}}$$

- θ controls risk aversion
- $1/\rho$ controls IES
Endowment Processes

- **i.i.d growth shocks** (uncorrelated across countries)
- **persistent long run risk shocks** (correlated across countries)
- **volatility shocks** (for now perfectly correlated across countries)

\[
g_{Yt} \equiv \log Y_t - \log Y_{t-1} = X_{Nt} + \sigma_{t-1} \varepsilon_{Yt}
\]

\[
X_{Nt} = \rho X_{Nt-1} + \sigma_{t-1} \varepsilon_{XNt}
\]

\[
g_{yit} \equiv \log y_{it} - \log y_{it-1} = X_{St} + \sigma_{t-1} \varepsilon_{yit}
\]

\[
X_{St} = \rho X_{St-1} + \sigma_{t-1} \varepsilon_{XS}
\]

\[
\rho_{XNS} = \text{corr}(\varepsilon_{XN}, \varepsilon_{XS})
\]
Endowment Processes

- i.i.d growth shocks (uncorrelated across countries)
- persistent long run risk shocks (correlated across countries)
- volatility shocks (for now perfectly correlated across countries)

\[g_{Yt} \equiv \log Y_t - \log Y_{t-1} = X_{Nt} + \sigma_{t-1} \varepsilon_{Yt} \]

\[X_{Nt} = \rho X_{Nt-1} + \sigma_{t-1} \varepsilon_{XNt} \]

\[g_{yt} \equiv \log y_{it} - \log y_{it-1} = X_{St} + \sigma_{t-1} \varepsilon_{yt} \]

\[X_{St} = \rho X_{St-1} + \sigma_{t-1} \varepsilon_{XS} \]

\[\rho_{XNS} = \text{corr}(\varepsilon_{XN}, \varepsilon_{XS}) \]
Endowment Processes

- i.i.d growth shocks (uncorrelated across countries)
- persistent long run risk shocks (correlated across countries)
- volatility shocks (for now perfectly correlated across countries)

\[g_{Yt} \equiv \log Y_t - \log Y_{t-1} = X_{Nt} + \sigma_{t-1} \varepsilon_{Yt} \]
\[X_{Nt} = \rho X_{Nt-1} + \sigma_{t-1} \varepsilon_{XNt} \]

\[g_{yit} \equiv \log y_{it} - \log y_{it-1} = X_{St} + \sigma_{t-1} \varepsilon_{yit} \]
\[X_{St} = \rho X_{St-1} + \sigma_{t-1} \varepsilon_{XS} \]

\[\log \sigma_t = (1 - \rho_\sigma) \bar{\sigma} + \rho_\sigma \log \sigma_{t-1} + \sigma_\sigma \varepsilon_{\sigma t} \]
\[\rho_{XNS} = corr(\varepsilon_{XN}, \varepsilon_{XS}) \]
Stocks

- Segmented stock markets
- Stocks are claims to risky country specific dividend streams
- Dividends risk loads on long run risk X and volatility σ_{t-1}
- Dividends

\[
g_{Dt} \equiv \log D_t - \log D_{t-1} = \alpha_D X_{Nt} + \sigma_{t-1} \varepsilon_{Dt}
\]

\[
g_{dit} \equiv \log d_{it} - \log d_{it-1} = \alpha_{DS} X_{St} + \sigma_{t-1} \varepsilon_{dit}
\]

\[
\rho_D = \text{corr}(\varepsilon_Y, \varepsilon_D), \quad \rho_{DS} = \text{corr}(\varepsilon_{yi}, \varepsilon_{di})
\]
Stocks

- Segmented stock markets
- Stocks are claims to risky country specific dividend streams
- Dividends risk loads on long run risk X and volatility σ_{t-1}
- Dividends

$$g_{Dt} \equiv \log D_t - \log D_{t-1} = \alpha_D X_{Nt} + \sigma_{t-1} \varepsilon_{Dt}$$
$$g_{dit} \equiv \log d_{it} - \log d_{it-1} = \alpha_{DS} X_{St} + \sigma_{t-1} \varepsilon_{dit}$$
$$\rho_D = \text{corr}(\varepsilon_Y, \varepsilon_D), \quad \rho_{DS} = \text{corr}(\varepsilon_{yi}, \varepsilon_{di})$$

- Main purpose: use P/D data to identify X_{Nt}, X_{St}
Debt and Default

- South borrow from North because of impatience ($\beta_N > \beta_S$) and when has good growth prospects ($\varepsilon_{XSt} > 0$)

- Long run bond with coupon decaying at rate φ (Hatchondo, Martinez 2009) Sequence of payment is given by

$$1, (1 - \varphi), (1 - \varphi)^2, \ldots$$

($\varphi = 1$ is 1 period debt, $\varphi = 0$ is a consol)

- Default on debt carries two punishments:
 - Default cost (in terms of output) $y_{it} f(g_{yit}, \kappa_{it})$ with κ_{it} stochastic (i.i.d.), $f \geq 0$, $f_g > 0$ and $f_{gg} > 0$ (Default costs are low and default more likely when g_{yit} low, standard in sovereign debt models)
 - Exclusion from credit markets and with probability λ, defaulted countries regain access to markets
Detrending and Aggregate States

• Detrend non stationary north and south variables \((Y_t, y_{it}, \ldots)\) with \(Y_{t-1}\) and \(y_{it-1}\) respectively (from now on all variables are stationary)

• Southern country states: \(\{b, \varepsilon_y, \kappa\} = \{b, m\}\)

• Aggregate state variables are \(S = (X_N, X_S, \sigma, \varepsilon_{X_N}, \varepsilon_{X_S}, \varepsilon_\sigma, \varepsilon_Y)\)
South Problem

- At beginning of period chooses whether to default or not

\[v(b, m, S) = \max \{ w^R(b, m, S), w^D(m, S) \}\]

Let \(d(b, m, S) = 1 \text{ if } w^D(m, S) < w^R(b, m, S)\)

- Default value:

\[w^D(m, S) = \left\{ (1 - \beta) c_d(m)^{1-\rho} + \right\] \\
\[\beta [g_y(m, S)]^{1-\rho} \left[E \left(\lambda w^R(0, m', S')^{1-\theta} + (1 - \lambda) w^D(m', S')^{1-\theta} \right) \right]^{\frac{1-\rho}{1-\theta}} \right\}^{\frac{1}{1-\rho}}\]

- Consumption after default \(c_d(m, S) = f(g_y(m, S), \kappa) g_y(m, S)\)
South Problem: Repaying

- Repaying value

\[w^R(b, m, S) = \max_{c, b'} \left\{ (1-\beta)c^{1-\rho} + \beta [g_y(m, S)]^{1-\rho} \left[Ev(b', m', S')^{1-\theta} \right]^{\frac{1-\rho}{1-\theta}} \right\}^{\frac{1}{1-\rho}} \]

subject to

\[c + b \leq g_y(m, S) + q(m, S, b') [b' g_y(m, S) - (1 - \varphi) b] . \]

- \(q(m, S, b') \) is the bond price schedule faced by south
Inhabited by a continuum of competitive agents with preferences

\[W(S) = \left\{ (1 - \beta_N) C^{1-\rho} + \beta_N g_Y^{1-\rho} \left[EW(S')^{1-\theta} \right]^{1-\rho} \right\}^{1-\rho} \]

Implies stochastic discount factor

\[Q(S, S') = \pi(S'|S) \beta_N g_Y^{-\rho} \left(\frac{C(S')}{C(S)} \right)^{-\rho} \left\{ \frac{W(S')}{[EW(S')^{1-\theta}]^{1-\theta}} \right\}^{\rho-\theta} \]

Pricing of long term bonds

\[q(m, S, b') = EQ(S, S')(1 - d(b', m', S'))[1 + (1 - \varphi)q(m', S', b'(m', S'))] \]
South Small in World Economy

• Assume South as a whole is a small in the world economy

• In resource constraint, take limit as a ratio of South consumption to North consumption goes to zero, so no feedback from South to North

• Can solve for the North SDF independently from the south

\[
Q(S, S') = \pi(S'|S)\beta_N \left(\frac{Y(S')}{Y(S)} \right)^{-\rho} \left\{ \frac{W(S')}{[EW(S')^{1-\theta}]^{\frac{1}{1-\theta}}} \right\}^{\rho-\theta}
\]

• SOE with correlation between North SDF and south endowment (through \(X_N, X_S\), and \(\sigma\))
Price-Dividend Ratio for South

- Price using southern pricing kernel $Q^S(s, s')$
- Southern dividend depends on long-run risk of South

$$p(s) = \sum \sum_{\varepsilon_d'} Q^S(s; s') [\exp(g_d(\sigma', X_S', \varepsilon_d'))(1 + p(s'))]$$

where

$$g_d(\sigma, X_S, \varepsilon_d) = \alpha_{DS} X_S + \sigma \varepsilon_d$$

$$Q^S(s, s') = \pi(m', S'|S)\beta_N(g_y)^{-\rho} \left(\frac{c(s')}{c(s)} \right)^{-\rho} \left\{ \frac{v(s')}{[Ev(s')^{1-\theta}]^{\frac{1}{1-\theta}}} \right\}^{\rho-\theta}$$
Price-Dividend Ratio for North

\[p^N(X_N, \sigma) = \sum Q(S, S') \left[\exp(g_D(\sigma', X'_N, \varepsilon'_D))(1 + p^N(X'_N, \sigma')) \right] \]

where

\[g_D(\sigma, X_N, \varepsilon_D) = \alpha_D X_N + \sigma \varepsilon_D \]
Parameterization

Assigned

1/γ, North and South IES & 1.5 \\
θ, North and South risk aversion & 10.0 \\
μ, North and South mean growth rate & 0.5%

Endogenously chosen

Volatility shock

σ, mean volatility shock & 1% \\
ρσ, persistence of volatility shock & 98.2% \\
σσ, s.d. volatility innovation & 1.1%

North Country Parameters

βN, discount factor & 0.997 \\
σX, s.d. long-run risk innovation & 0.03% \\
ρ, persistence of long-run risk & 98% \\
σ, s.d. idiosyncratic growth innovation & 0.7% \\
αD, loading of dividend on long-run risk & 12 \\
σD, s.d. of dividend idiosyncratic innovation & 15% \\
ρD, corr. of dividend innovation and idiosyncratic growth innovation & 85.5%
Parameterization

Endogenously chosen

South Country Parameters
\(\beta_S \), discount factor 0.97
\(\sigma_{SX} \), s.d. long-run risk innovation 0.03%
\(\sigma_S \), s.d. idiosyncratic innovation 1.2%
\(\alpha_S \), loading of growth on long-run risk 1.7
\(\alpha_{DS} \), loading of dividend on long-run risk 15
\(\sigma_{DS} \), s.d. of dividend idiosyncratic innovation 20%
\(\rho_{DS} \), corr. of dividend innovation and idiosyncratic growth innovation 22%

Debt and default parameters
\(\phi \), decay of long-term debt 0.05
\(a_0 \), default cost parameter 0.06
\(a_1 \), default cost parameter 14
\(\sigma_\kappa \), s.d of default cost shock \(\kappa \) 2%

Cross-Correlations, North and South
\(\rho_{XNS} \), Corr. of long-run risk innovations 0.4

- Default cost function
\[
f(g_y, \kappa) = \kappa y \left(1 - a_0 g_y^{a_1}\right)
\]
Standard Model

- No long run risk, correlated (across south) growth shocks
- Risk neutral North
- Default cost recalibrated to match default frequency
- Long run debt
Statistics

Annual output growth

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Bench</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation, North</td>
<td>2.4</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>S.d. output growth, South</td>
<td>4.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Serial corr of output growth, N</td>
<td>34.0</td>
<td>31.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Serial corr of output growth, S</td>
<td>43.1</td>
<td>26.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Corr of output growth, N and S</td>
<td>17.3</td>
<td>2.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Corr of output growth across S</td>
<td>16.5</td>
<td>5.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Interest rate, default rate, and spreads

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Bench</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean spread</td>
<td>4.4</td>
<td>6.0</td>
<td>3.1</td>
</tr>
<tr>
<td>S.d. spread</td>
<td>2.1</td>
<td>2.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Mean default rate</td>
<td>2.1</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Mean risk free rate</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>S.d. risk free rate</td>
<td>1.0</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Correlations with spread

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Bench</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr of spreads across S</td>
<td>51.6</td>
<td>41.8</td>
<td>20.0</td>
</tr>
<tr>
<td>Corr (S growth, S spreads)</td>
<td>-36.3</td>
<td>-26.3</td>
<td>-62.0</td>
</tr>
<tr>
<td>Corr (S stock returns, S spreads)</td>
<td>-9.2</td>
<td>-10.2</td>
<td>-5.6</td>
</tr>
<tr>
<td>Corr (N stock returns, S spreads)</td>
<td>-11.0</td>
<td>-11.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Benchmark model can get **high, correlated and volatile** spreads
Statistics

Stock returns

<table>
<thead>
<tr>
<th>Measure</th>
<th>Data</th>
<th>Bench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of stock returns North</td>
<td>32.1</td>
<td>37.2</td>
</tr>
<tr>
<td>Volatility of stock returns South</td>
<td>67.0</td>
<td>66.7</td>
</tr>
<tr>
<td>Average stock return North</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Average stock returns South</td>
<td>9.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Corr of stock returns across South</td>
<td>30.9</td>
<td>37.2</td>
</tr>
<tr>
<td>Corr of stock returns, S and N</td>
<td>41.7</td>
<td>18.8</td>
</tr>
<tr>
<td>Corr (stock returns, output growth), S</td>
<td>11.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Corr (stock returns, output growth), N</td>
<td>40.2</td>
<td>43.8</td>
</tr>
<tr>
<td>Equity premium, North</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Equity premium, South</td>
<td>8.0</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Current accounts

<table>
<thead>
<tr>
<th>Measure</th>
<th>Data</th>
<th>Bench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of CA/GDP, South</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Corr of CA/GDP across South</td>
<td>11.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Corr(CA/GDP, GDP) (HP filtered)</td>
<td>-52.0</td>
<td>-29.7</td>
</tr>
</tbody>
</table>
Impulse Responses
• Large response of \((p/D)\) (15\%), small response spreads (15bp)

\[
\frac{\Delta \text{Spread}}{\Delta \log(P/D)_N} \simeq 1
\]

• Implies \(X_N\) mainly targets \((p/D)_N\)
Impulse Response to South LRR

- \[\frac{\Delta \text{Spread}}{\Delta \log(p/D)_S} \approx 3 \]
- Implies \(X_S \) mainly targets \((p/D)_S\)
Impulse Response to Volatility

- Small response in \((p/D)(3\%)\), large response in spreads (60bp)
- \(\frac{\Delta \text{Spread}}{\Delta (p/D)} \approx 20\)
- Implies \(\sigma\) mainly targets spreads
Summary

• Long run risk in North
 • Large impact on stock market in North
 • Small impact on spread

• Long run risk in South
 • Large impact on stock market in South
 • Small impact on spread

• Volatility shock
 • Small impact on stock market in North and South
 • Large impact on spread

Important for understanding how model identifies shocks
What Drives Common Component of Spreads

- Analyze what drives common component of spreads
 - Long run risk in the North, X_{Nt}?
 - Long run risk in the South, X_{St}?
 - World volatility, σ_t?
- Also look at idiosyncratic patterns of country spreads
Decomposing Spreads Using Particle Filter

Counterfactual on 1994Q1-2018Q4 period

- Countries: U.S., Mexico, Brazil, Philippines, Turkey
- Observables: $Z_t = [(p/D)_N, (p/D)_S, g_Y, \{g_{yi}, spr_i\}_{i=1}^{4}]$
 - price-dividend ratio U.S., median price-dividend ratio South, output growth of all countries, spreads of southern countries
- Conditional on Z^t, use model to filter historical sequence of shocks
 - 11 observables discipline 8 shocks
 - $\{\sigma_t, X_{Nt}, X_{St}, \varepsilon_{Yt}, \{\varepsilon_{yit}\}_{i=1}^{4}\}$
- Contribution of each aggregate shock
 - Compare model with all shocks to model with one shock dropped
 - Focus on drop X_N, drop σ
• Large common component of spreads in the data
• 2003-2007: Great Spreads Moder: Falling Spds, Stable \((P/D)_N\)
• 2008-2009: Great Recession: Spike in Spds, Collapse \((P/D)_N\)
Average Spreads: Data and Model

- Model matches fairly well averages
Cross section of Spreads: Data and Model

- Model does not capture well the cross sectional dispersion of spreads
- Only country specific shock: iid growth rate shocks
- Need more idiosyncratic shocks (e.g. X_{it}, σ_{it})
Accounting for Common Component of Spreads

• Long run risk in North, or volatility?

• Answer using counterfactual experiments: compare baseline to
 • Model without X_N shocks
 • Model without σ shocks

• Summary
 • Volatility plays the biggest role, in particular in explaining the
great spread reduction in 2002-2007
 • Long risk in the North contributes to lower spreads in 1998-2001,
 higher spreads during the Great Recession
Explaining 1998-2001: High stock prices and spreads

- High stock prices (High $(P/D)_N$) justified by good growth prospects (High X_N)

- High spreads justified by high risk (High σ)

- Possible because X_N and σ have differential effect on stock prices and spreads

- X_N mostly affects stock prices, σ spreads
Explaining 1998-2001: High stock prices and spreads

- High X_N: justifies high stocks, pushes spreads down a bit
- High σ: justifies high spreads, little effect on stocks
Explaining 2003-2007
Declining Spreads, Stable \((P/D)_N\)

- Falling spreads justified by large decline in \((\sigma)\)

- Stable stock prices \((P/D)_N\) because mild decline in growth prospects \((X_N)\)
The great spread moderation mostly accounted by falling volatility.
2007-2009: Sharp decline stock prices and spike in spreads

- Data calls for decline growth prospects (X_N) and increase in risk
Explaining the Great Recession
Falling Stock Prices and Increasing Spreads

Data
- North P/D Ratio
- Avg. South Spread

Shocks
- Vol
- X_N

North P/D Ratio
- Baseline
- No Vol
- No X_N

South Spreads
- No Vol
- Baseline
What About X_S?
Estimated from Time Series in $(P/D)_S$

- Movements in X_S contribute to
 - More Volatile spreads in the 1998-2001 period
 - Not much else
The role of long run risk in the South: X_S

Data
- **South P/D Ratio**
- **Avg. South Spread**

Shocks
- **X_S**
- **Vol**

South P/D Ratio
- **Baseline**
- **No X_S**
- **No Vol**

South Spreads
- **Baseline**
- **No X_S**
- **No Vol**
Summarizing

• Stock market data plus theory suggest time varying volatility plays a major role in explaining spreads

• Is it volatility in the South (quantity of Risk) or volatility in the North (price of Risk)?
Spreads
Volatility in N & S v/s Volatility only in N

- Without South Vol, model can only account for a fraction of volatility of spreads
- Suggest important role of South Vol (quantity of risk)
Volatility shocks backed by model track VIX post 1998, not early on

More evidence for importance of quantity of risk
Conclusions

Standard Sovereign debt models

- Spreads driven by idiosync. growth shocks affecting South SOEs

Data

- Spreads display volatile common component even though growth not highly correlated across South SOEs

Results

- Model and data suggest stochastic volatility key for dynamics of the common component of spreads
- Not just volatility in North (price of risk) but also volatility in the South (quantity of risk)

Next

- Welfare in emerging markets (need richer model of South)
- Interactions between price and quantity of Risk
- Compare to alternative theories of the co-movement of spreads (Contagion,Liquidity)