Foreign Reserve Management

M. Amador1 J. Bianchi2 L. Bocola3 F. Perri4

1Minneapolis Fed and U of Minnesota
2Minneapolis Fed
3Minneapolis Fed and Stanford
4Minneapolis Fed
Over the past 20 years massive increase in foreign reserves holdings by Central Banks around the world.
Why do central banks hold foreign reserves?

1. *Precautionary motive*: reserves used as a buffer for bad shocks

2. *Exchange rate management*: reserves used to achieve a policy for nominal exchange rates
Motivation (ctd)

Why do central banks hold foreign reserves?

1. *Precautionary motive*: reserves used as a buffer for bad shocks
2. *Exchange rate management*: reserves used to achieve a policy for nominal exchange rates

How should central banks manage their portfolio?

- *Precautionary motive*: buy assets that pay in bad times
- *Exchange rate management*: lack of a theory
Motivation (ctd)

Why do central banks hold foreign reserves?

1. *Precautionary motive*: reserves used as a buffer for bad shocks

2. *Exchange rate management*: reserves used to achieve a policy for nominal exchange rates

How should central banks manage their portfolio?

- *Precautionary motive*: buy assets that pay in bad times
- *Exchange rate management*: lack of a theory

This paper: Given exchange rates and monetary policy objectives, How should a Central Bank manage its reserve portfolio?
CB has a monetary policy objective: \(\{i, e_t, e_{t+1}\} \)

Suppose that \((1 + i)\frac{e_t}{e_{t+1}} > (1 + i^*)\) (needs limited arbitrage)
CB has a monetary policy objective: \(\{i, e_t, e_{t+1}\} \)

Suppose that \((1 + i) \frac{e_t}{e_{t+1}} > (1 + i^*)\) (needs limited arbitrage)

- Euler equation in the domestic market

\[
u'(c_t) = \beta \left[(1 + i) \frac{e_t}{e_{t+1}}\right] u'(c_{t+1})
\]
CB has a monetary policy objective: \(\{i, e_t, e_{t+1}\} \)

Suppose that \((1 + i)\frac{e_t}{e_{t+1}} > (1 + i^*)\) (needs limited arbitrage)

- Euler equation in the domestic market
 \[
 u'(c_t) = \beta \left[(1 + i)\frac{e_t}{e_{t+1}} \right] u'(c_{t+1})
 \]

- **Unique** consumption profile \(\Rightarrow\) Requires foreign reserve accumulation (but no portfolio choice) by the CB
Foreign reserve management without uncertainty

CB has a monetary policy objective: \(\{i, e_t, e_{t+1}\} \)

Suppose that \((1 + i) \frac{e_t}{e_{t+1}} > (1 + i^*)\) (needs limited arbitrage)

- Euler equation in the domestic market

\[
u'(c_t) = \beta \left[(1 + i) \frac{e_t}{e_{t+1}} \right] u'(c_{t+1})
\]

- Unique consumption profile \(\Rightarrow\) Requires foreign reserve accumulation (but no portfolio choice) by the CB

Policy has two costs

- Current consumption is too low
- Resource loss, as foreigners exploit interest differential
With uncertainty, consider similar policy violating interest parity
With uncertainty, consider similar policy violating interest parity

- Euler equation:

\[u'(c_t) = \beta \mathbb{E} \left[(1 + i) \frac{e_t}{e_{t+1}} u'(c_{t+1}) \right] \]

- **Multiple** consumption profiles consistent with same targets
Foreign reserve management with uncertainty

With uncertainty, consider similar policy violating interest parity

- **Euler equation:**

\[u'(c_t) = \beta \mathbb{E} \left[(1 + i) \frac{e_t}{e_{t+1}} u'(c_{t+1}) \right] \]

- **Multiple** consumption profiles consistent with same targets

- CB can implement *any* of them by managing its foreign reserves portfolio

 - Tilts consumption towards the future, as before
 - But can also *change consumption across states*
With uncertainty (continued)

- Thus CB has more options with uncertainty

For example:

- A negative covariance between the appreciation and future marginal utility boosts c_t for *same targets*:

$$u'(c_t) = \beta \mathbb{E} \left[(1 + i) \frac{e_t}{e_{t+1}} u'(c_{t+1}) \right]$$
With uncertainty (continued)

• Thus CB has more options with uncertainty

For example:

• A negative covariance between the appreciation and future marginal utility boosts c_t for same targets:

$$u'(c_t) = \beta E \left((1 + i) \frac{e_t}{e_{t+1}} u'(c_{t+1}) \right)$$

• But other domestic asset prices are affected

\Rightarrow Potentially larger resource loss: foreigners exploit the best return differential
With uncertainty (continued)

• Thus CB has more options with uncertainty

For example:

• A negative covariance between the appreciation and future marginal utility boosts c_t for *same targets*:

$$u'(c_t) = \beta \mathbb{E} \left[(1 + i) \frac{e_t}{e_{t+1}} u'(c_{t+1}) \right]$$

• But other domestic asset prices are affected

⇒ Potentially larger resource loss: *foreigners exploit the best return differential*

Trade-off: consumption smoothing vs resource losses
Resolving the trade-off

When potential capital inflows are small – resource losses are small

- Optimal to focus on consumption smoothing
- Reserve management goal: increase consumption in states where currency appreciates
Resolving the trade-off

When potential capital inflows are small – resource losses are small

- Optimal to focus on consumption smoothing
- Reserve management goal: increase consumption in states where currency appreciates

When potential capital inflows are large – resources losses are large

- Optimal to focus on minimizing resource losses
- Purchase relatively safe foreign portfolio
• Two-period model, \(t \in \{1, 2\} \)
 - Small open economy (central bank + households)
 - International Financial Market
 - Foreign Intermediaries

• Uncertainty realized at \(t = 2 \)
 - \(s \in S \equiv \{s_2, ..., s_N\}, \pi(s) \)

• One (tradable) good, law of one price, foreign price normalized to 1
Asset markets: complete but segmented

International financial markets (IFM)

- Full set of Arrow-Debreu securities in foreign currency:
 - Security s: 1 unit of foreign currency in state s, 0 otherwise
 - Price $q(s)$ in terms of foreign currency at $t = 1$

Domestic financial market

- Full set of Arrow-Debreu securities in domestic currency
 - Security s: 1 unit of domestic currency in state s, 0 otherwise
 - Price $p(s)$ in terms of domestic currency at $t = 1$

Foreign Intermediaries

- Trade securities with SOE & IFM and have limited capital
Households

- Endowment: \((y_1, \{y_2(s)\})\), transfers: \(\{T_2(s)\}\)

\[
\max_{c_1, \{c_2(s), a(s), f(s)\}} \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}
\]

subject to:

\[
y_1 = c_1 + \sum_{s \in S} \left[q(s)f(s) + p(s) \frac{a(s)}{e_1} \right]
\]

\[
y_2(s) + T_2(s) + f(s) + \frac{a(s)}{e_2(s)} = c_2(s) \quad \forall s \in S
\]

\[
f(s) \geq 0, \quad \forall s \in S
\]

\(e_1, e_2(s)\): exchange rates at \(t = 1\) and \(t = 2\)

\(f(s), a(s)\): holdings of foreign and domestic security \(s\)
Households

- Endowment: \((y_1, \{y_2(s)\})\), transfers: \(\{T_2(s)\}\)

\[
\max_{c_1, \{c_2(s), a(s), f(s)\}} \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}
\]

subject to:

\[
y_1 = c_1 + \sum_{s \in S} \left[q(s)f(s) + p(s) \frac{a(s)}{e_1} \right]
\]

\[
y_2(s) + T_2(s) + f(s) + \frac{a(s)}{e_2(s)} = c_2(s) \quad \forall s \in S
\]

\[f(s) \geq 0, \quad \forall s \in S\]

\[e_1, e_2(s): \text{ exchange rates at } t = 1 \text{ and } t = 2\]

\[f(s), a(s): \text{ holdings of foreign and domestic security } s\]
Foreign Intermediaries

- Endowed with capital \bar{w}

\[
\max_{\{d_1^*, d_2^*(s), a^*(s), f^*(s)\}} \quad d_1^* + \sum_{s \in S} \pi(s) \Lambda(s) d_2^*(s)
\]

subject to:

\[
\bar{w} = d_1^* + \sum_{s \in S} p(s) \frac{a^*(s)}{e_1} + \sum_{s \in S} q(s) f^*(s)
\]

\[
d_2^*(s) = \frac{a^*(s)}{e_2(s)} + f^*(s) \quad \forall s \in S
\]

\[
f^*(s) \geq 0 \quad a^*(s) \geq 0, \quad \forall s \in S
\]

Consider $\Lambda(s) = \frac{q(s)}{\pi(s)}$ (same SDF as IFM)
Foreign Intermediaries

- Endowed with capital \bar{w}

\[
\max_{\{d_1^*, d_2^*(s), a^*(s), f^*(s)\}} \quad d_1^* + \sum_{s \in S} \pi(s) \Lambda(s) d_2^*(s)
\]

subject to:

\[
\bar{w} = d_1^* + \sum_{s \in S} p(s) \frac{a^*(s)}{e_1} + \sum_{s \in S} q(s) f^*(s)
\]

\[
d_2^*(s) = \frac{a^*(s)}{e_2(s)} + f^*(s) \quad \forall s \in S
\]

\[
f^*(s) \geq 0 \quad a^*(s) \geq 0, \quad \forall s \in S
\]

Consider $\Lambda(s) = \frac{q(s)}{\pi(s)}$ (same SDF as IFM)
Central Bank

- CB has an objective for the nominal interest rate and exchange rates that we take as given: \((i, e_1, \{e_2(s)\})\)

\[
1 + i = \left(\sum_{s \in S} p(s) \right)^{-1} \quad \text{(NIRC)}
\]
Central Bank

- CB has an objective for the nominal interest rate and exchange rates that we take as given: \((i, e_1, \{e_2(s)\})\)

\[
1 + i = \left(\sum_{s \in S} p(s)\right)^{-1} \quad \text{(NIRC)}
\]

- CB achieves its objective by managing its balance sheet: invest \(\{A(s), F(s)\}\); and transfers \(\{T_2(s)\}\) to households, subject to budget constraints
Central Bank

• CB has an objective for the nominal interest rate and exchange rates that we take as given: $(i, e_1, \{e_2(s)\})$

\[
1 + i = \left(\sum_{s \in S} p(s) \right)^{-1}
\]

(NIRC)

• CB achieves its objective by managing its balance sheet: invest $\{A(s), F(s)\}$; and transfers $\{T_2(s)\}$ to households, subject to budget constraints

• Given objectives, CB chooses policies to maximize welfare
• CB has an objective for the nominal interest rate and exchange rates that we take as given: \((i, e_1, \{e_2(s)\})\)

\[
1 + i = \left(\sum_{s \in S} p(s) \right)^{-1} \tag{NIRC}
\]

• CB achieves its objective by managing its balance sheet: invest \(\{A(s), F(s)\}\); and transfers \(\{T_2(s)\}\) to households, subject to budget constraints

• Given objectives, CB chooses policies to maximize welfare

Same portfolio of securities as households (no hedging motive)
Characterizing equilibria: Arbitrage returns

- **Arbitrage return** for security s:

\[
\kappa(s) \equiv \frac{e_1}{e_2(s)p(s)} - 1
\]

$\kappa(s) > 0 \implies$ domestic security paying in state s yields higher return

- Households: borrow up to limit in foreign currency security and invest in domestic one.
Characterizing equilibria: Arbitrage returns

- **Arbitrage return** for security s:

\[
\kappa(s) \equiv \frac{e_1}{e_2(s)p(s)} - 1
\]

\(\kappa(s) > 0 \Rightarrow\) domestic security paying in state s yields higher return

- Households: borrow up to limit in foreign currency security and invest in domestic one.

- Intermediaries: invest all available funds in security that delivers highest return.
Characterizing equilibria: Arbitrage returns

- **Arbitrage return** for security s:

 $$\kappa(s) \equiv \frac{e_1}{e_2(s)p(s)} \left(1 - \frac{1}{q(s)}\right)$$

 $\kappa(s) > 0 \Rightarrow$ domestic security paying in state s yields higher return

- Households: borrow up to limit in foreign currency security and invest in domestic one.

- Intermediaries: invest all available funds in security that delivers highest return. Let $\overline{\kappa} \equiv \max_s \{\kappa(s)\}$

 \Rightarrow Profits $\overline{\kappa} \times \overline{w}$
Characterizing equilibria: Resource constraint

Profits for intermediaries are losses for the SOE

\[(y_1 - c_1) + \sum_{s \in S} q(s)[y_2(s) - c_2(s)] = \bar{\kappa}\bar{w}\]
Central bank objective and interest parity

CB objective \((i, e_1, \{e_2(s)\})\) determines the risk-adjusted return differential between the risk-free domestic bond and the foreign one

\[
\Delta(i) \equiv \mathbb{E} \left[\Lambda(s) \left(\frac{e_1}{e_2(s)} (1 + i) - (1 + i^*) \right) \right]
\]

If \(\Delta(i) > 0\), domestic assets dominate foreign assets. The opposite happens when \(\Delta(i) < 0\).

Focus on regime in which \(\Delta(i) > 0\)

• More likely if currency expected to appreciate or safe heaven.
• Requires some securities to have \(\kappa(s) \geq \Delta(i)\).
Central bank objective and interest parity

CB objective \((i, e_1, \{e_2(s)\})\) determines the risk-adjusted return differential between the risk-free domestic bond and the foreign one

\[
\Delta(i) \equiv \mathbb{E} \left[\Lambda(s) \left(\frac{e_1}{e_2(s)}(1 + i) - (1 + i^*) \right) \right]
\]

If \(\Delta(i) > 0\), domestic assets dominate foreign assets. The opposite happens when \(\Delta(i) < 0\).
CB objective \((i, e_1, \{e_2(s)\})\) determines the risk-adjusted return differential between the risk-free domestic bond and the foreign one

\[
\Delta(i) \equiv \mathbb{E} \left[\Lambda(s) \left(\frac{e_1}{e_2(s)}(1 + i) - (1 + i^*) \right) \right]
\]

If \(\Delta(i) > 0\), domestic assets \textit{dominate} foreign assets. The opposite happens when \(\Delta(i) < 0\).

Focus on regime in which \(\Delta(i) > 0\)

- More likely if currency expected to appreciate or safe heaven.
- Requires some securities to have \(\kappa(s) \geq \Delta(i)\)
$\Delta(i) > 0$ implies that capital flows in & c_1 is low
On the Need of Central Bank Intervention

$\Delta(i) > 0$ implies that capital flows in & c_1 is low

From BOP equation, CB needs to buy some foreign assets

$$c_1 - y_1 = \sum_s \frac{p(s)}{e_1} a^*(s) - \sum_s q(s) [f(s) + F(s)]$$
\[\Delta(i) > 0 \] implies that capital flows in & \(c_1 \) is low

From BOP equation, CB needs to buy \textit{some} foreign assets

\[
c_1 - y_1 = \sum_s \frac{p(s)}{e_1} a^*(s) - \sum_s q(s) [F(s)]
\]

Households are privately \textit{unwilling} (but able) to make these trades and \textit{unable} to undo them
On the Need of Central Bank Intervention

$\Delta(i) > 0$ implies that capital flows in & c_1 is low

From BOP equation, CB needs to buy some foreign assets

$$c_1 - y_1 = \sum_s \frac{p(s)}{e_1} a^*(s) - \sum_s q(s) [F(s)]$$

Households are privately *unwilling* (but able) to make these trades and *unable* to undo them

Which assets \{F(s)\} should CB buy?
\(\Delta(i) > 0 \) implies that capital flows in & \(c_1 \) is low

From BOP equation, CB needs to buy *some* foreign assets

\[
c_1 - y_1 = \sum_s \frac{p(s)}{e_1} a^*(s) - \sum_s q(s) \left[F(s) \right]
\]

Households are privately *unwilling* (but able) to make these trades and *unable* to undo them

Which assets \(\{F(s)\} \) should CB buy?

- Potential size of capital flows is key
- Today: two cases
Optimal policy. Assume $\bar{w} = 0$ and $q(s) = \beta^*\pi(s)$

- Higher $\kappa(s)$ in states in which exchange rate appreciates

Nominal bond is too attractive \Rightarrow "excessive" savings

Key idea: promise low marginal utility (i.e., high c_2, κ) when nominal bond pays more (i.e., e_2 appreciates).

NIRC binds from below:

$$1 + i^* \geq E\left(e_1 e_2(s)\right) E\left(1 + \kappa(s)\right) + \text{Cov}(e_1 e_2(s), 1 + \kappa(s))$$

To reduce average intertemporal distortion $\sim E[\kappa(s)]$, increase intratemporal distortions.
Financially closed economy

Optimal policy. Assume $\bar{w} = 0$ and $q(s) = \beta^* \pi(s)$

- Higher $\kappa(s)$ in states in which exchange rate appreciates

- Nominal bond is too attractive \Rightarrow “excessive” savings

- Key idea: promise low marginal utility (i.e., high c_2, κ) when nominal bond pays more (i.e., e_2 appreciates).
Financially closed economy

Optimal policy. Assume $\bar{w} = 0$ and $q(s) = \beta^*\pi(s)$

- Higher $\kappa(s)$ in states in which exchange rate appreciates
- Nominal bond is too attractive \Rightarrow “excessive” savings
- Key idea: promise low marginal utility (i.e., high c_2, κ) when nominal bond pays more (i.e., e_2 appreciates).

\[
\frac{1 + i^*}{1 + i} \geq \mathbb{E} \left(\frac{e_1}{e_2(s)} \right) \mathbb{E} \left(\frac{1}{1 + \kappa(s)} \right) + \text{Cov} \left(\frac{e_1}{e_2(s)}, \frac{1}{1 + \kappa(s)} \right)
\]

- To reduce average \textit{intertemporal} distortion $\sim \mathbb{E}[\kappa(s)]$, increase \textit{intratemporal} distortions.
Financially closed economy

Optimal policy. Assume $\bar{w} = 0$ and $q(s) = \beta^* \pi(s)$

- Higher $\kappa(s)$ in states in which exchange rate appreciates

- Nominal bond is too attractive \Rightarrow “excessive” savings

- Key idea: promise low marginal utility (i.e., high c_2, κ) when nominal bond pays more (i.e., e_2 appreciates).

NIRC binds from below:

$$\frac{1 + i^*}{1 + i} \geq \mathbb{E} \left(\frac{e_1}{e_2(s)} \right) \mathbb{E} \left(\frac{1}{1 + \kappa(s)} \right) + \text{Cov} \left(\frac{e_1}{e_2(s)}, \frac{1}{1 + \kappa(s)} \right)$$

- To reduce average *intertemporal* distortion $\sim \mathbb{E}[\kappa(s)]$, increase *intratemporal* distortions.
From arbitrage gaps to reserves, $\kappa(s) \rightarrow F(s)$

Higher $\kappa(s)$ in states in which exchange rate appreciates, imply that CB accumulates assets that pay when exchange rate appreciates

- High $\kappa(s)$ tilts consumption towards future in that state
- CB has to buy $F(s)$ to deliver consumption goods in that state

$$F(s) = c(s) - y(s)$$
From arbitrage gaps to reserves, $\kappa(s) \rightarrow F(s)$

Higher $\kappa(s)$ in states in which exchange rate appreciates, imply that CB accumulates assets that pay when exchange rate appreciates

- High $\kappa(s)$ tilts consumption towards future in that state
- CB has to buy $F(s)$ to deliver consumption goods in that state

$$F(s) = c(s) - y(s)$$

If the exchange rate appreciates in good times and assuming that output volatility is low:

- CB buys assets that pay-off in good times
Higher $\kappa(s)$ in states in which exchange rate appreciates, imply that CB accumulates assets that pay when exchange rate appreciates

- High $\kappa(s)$ tilts consumption towards future in that state
- CB has to buy $F(s)$ to deliver consumption goods in that state

$$F(s) = c(s) - y(s)$$

If the exchange rate appreciates in good times and assuming that output volatility is low:

- CB buys assets that pay-off in good times
From arbitrage gaps to reserves, $\kappa(s) \rightarrow F(s)$

Higher $\kappa(s)$ in states in which exchange rate appreciates, imply that CB accumulates assets that pay when exchange rate appreciates

- High $\kappa(s)$ tilts consumption towards future in that state
- CB has to buy $F(s)$ to deliver consumption goods in that state

$$F(s) = c(s) - y(s)$$

If the exchange rate appreciates in good times and assuming that output volatility is low:

- CB buys assets that pay-off in good times
Recall losses: \(\max_s \{ \kappa(s) \} \bar{w} \)
Financially open economy (large \bar{w})

Recall losses:

$$\max_s \{\kappa(s)\} \bar{w}$$

$$\min_{\{\kappa(s)\}_{s \in S}} \left\{ \max_s \{\kappa(s)\} \right\}$$

$$s.t. \quad 0 \leq 1 + i - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)}$$

(NIRC)
Financially open economy (large $\bar{\nu}$)

Recall losses: $\max_s \{\kappa(s)\} \bar{\nu}$

\[
\min_{\{\kappa(s)\}_{s \in S}} \left\{ \max_s \{\kappa(s)\} \right\}
\]

\[s.t. \quad 0 \leq 1 + i - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} \quad \text{(NIRC)}\]

- Optimal policy calls for equal gaps $\kappa(s) = \kappa \ \forall s$
- only allocation in which intermediaries demand risk-free bonds
- Some leeway about CB portfolio, as long as it is relatively safe
Conclusion

- Developed a framework to analyze the reserve management problem for a CB with nominal objectives
- Uncover trade-off for reserve management, based on a risk-channel
- Show that foreign reserve management can play an important and independent role when traditional monetary policy tools are constrained or devoted to alternative objectives

- Agenda
 - Implementation with specific assets (e.g. bonds and equity)
 - Capital controls on outflows
 - Closed economy implications
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}
\]

s.t.

\[
y_1 - c_1 - \sum_s q(s)c_2(s) = L^* (\{\kappa(s)\}, \bar{\kappa})
\]

(IRC)

\[
1 - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i
\]

(NIRC)

\[
1 + \kappa(s) = \frac{q(s)u'_1(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s
\]

(\(\kappa(s)\))

\[
\max_s \kappa(s) = \bar{\kappa}
\]

(\(\bar{\kappa}\))
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s)u(c_2(s)) \right\}
\]

s.t. \[
y_1 - c_1 - \sum_s q(s)c_2(s) = L^*\left(\{\kappa(s)\}, \bar{\kappa}\right) \tag{IRC}
\]

\[
1 - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i \tag{NIRC}
\]

\[
1 + \kappa(s) = \frac{q(s)u_1'(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s \tag{\kappa(s)}
\]

\[
\max_s \kappa(s) = \bar{\kappa} \quad \tag{\bar{\kappa}}
\]
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}
\]

s.t. \(y_1 - c_1 - \sum q(s)c_2(s) = L^\star(\{\kappa(s)\}, \bar{\kappa})\) \hspace{1cm} (IRC)

\[
1 - \sum_{s} \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i
\]

\(1 + \kappa(s) = \frac{q(s)u_1'(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s\) \hspace{1cm} (\kappa(s))

\[
\max_{s} \kappa(s) = \bar{\kappa}
\]

\(\bar{\kappa}\)
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s) u(c_2(s)) \right\}
\]

s.t.

\[
y_1 - c_1 - \sum_s q(s)c_2(s) = L^*\left(\{\kappa(s)\}, \bar{\kappa}\right) \tag{IRC}
\]

\[
1 - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i \tag{NIRC}
\]

\[
1 + \kappa(s) = \frac{q(s)u_1'(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s \tag{\kappa(s)}
\]

\[
\max_s \kappa(s) = \bar{\kappa} \tag{\bar{\kappa}}
\]
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V(\tilde{\kappa}) = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s)u(c_2(s)) \right\}
\]

subject to

\[
y_1 - c_1 - \sum_s q(s)c_2(s) = L^*(\{\kappa(s)\}, \tilde{\kappa}) \tag{IRC}
\]

\[
1 - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i \tag{NIRC}
\]

\[
1 + \kappa(s) = \frac{q(s)u_1'(c_1)}{\beta\pi(s)u'(c_2(s))} \quad \forall s \tag{\kappa(s)}
\]

\[
1 + \tilde{\kappa} \geq \frac{q(s)u_1'(c_1)}{\beta\pi(s)u'(c_2(s))} \quad \forall s
\]

Approach: Split problem

- Solve problem for given \(\tilde{\kappa}\).
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V(\tilde{\kappa}) = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s)u(c_2(s)) \right\}
\]

\[
s.t. \quad y_1 - c_1 - \sum q(s)c_2(s) = L^*({\kappa(s)}, \tilde{\kappa}) \quad (IRC)
\]

\[
1 - \sum_s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i \quad (NIRC)
\]

\[
1 + \kappa(s) = \frac{q(s)u'_1(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s \quad (\kappa(s))
\]

Approach: Split problem

- Solve problem for given \(\tilde{\kappa}\). Check ignored constraints
The Central Bank’s problem: choose \((c_1, \{c_2(s), \kappa(s)\})\) to solve

\[
V(\tilde{\kappa}) = \max \left\{ u(c_1) + \beta \sum_{s \in S} \pi(s)u(c_2(s)) \right\}
\]

\[
s.t. \quad y_1 - c_1 - \sum q(s)c_2(s) = L^*(\{\kappa(s)\}, \tilde{\kappa}) \quad (IRC)
\]

\[
1 - \sum s \frac{q(s)e_1}{(1 + \kappa(s))e_2(s)} = i \quad (NIRC)
\]

\[
1 + \kappa(s) = \frac{q(s)u'_1(c_1)}{\beta \pi(s)u'(c_2(s))} \quad \forall s \quad (\kappa(s))
\]

Approach: Split problem

- Solve problem for given \(\tilde{\kappa}\). Check ignored constraints
- Solve \(V = \max_{\tilde{\kappa}} V(\tilde{\kappa})\), \(\tilde{\kappa} = \arg\max V(\tilde{\kappa})\)
CB must open positive “gaps”

For some $s, \kappa(s) > 0$

Under $\kappa(s) \leq 0$

$$\sum_{s \in S} p(s) = \sum_{s \in S} q(s) \frac{e_1}{e_2(s)(1 + \kappa(s))} \geq \sum_{s \in S} q(s) \frac{e_1}{e_2(s)} = \frac{1 + \Delta(i)}{1 + i}$$

Since $\Delta(i) > 0$,

$$\left[\sum_{s \in S} p(s) \right]^{-1} < (1 + i)$$

Interest rate is too low relative to NIRC.
CB must open positive “gaps”

For some \(s, \kappa(s) > 0 \)

Under \(\kappa(s) \leq 0 \)

\[
\sum_{s \in S} p(s) = \sum_{s \in S} q(s) \frac{e_1}{e_2(s)(1 + \kappa(s))} \geq \sum_{s \in S} q(s) \frac{e_1}{e_2(s)} = \frac{1 + \Delta(i)}{1 + i}
\]

Since \(\Delta(i) > 0 \),

\[
\left[\sum_{s \in S} p(s) \right]^{-1} < (1 + i)
\]

Interest rate is too low relative to NIRC.

In fact, CB always finds optimal to set \(\kappa(s) > 0 \) for all \(s \)
CB must open positive “gaps”

For some \(s, \kappa(s) > 0 \)

Under \(\kappa(s) \leq 0 \)

\[
\sum_{s \in S} p(s) = \sum_{s \in S} q(s) \frac{e_1}{e_2(s)(1 + \kappa(s))} \geq \sum_{s \in S} q(s) \frac{e_1}{e_2(s)} = \frac{1 + \Delta(i)}{1 + i}
\]

Since \(\Delta(i) > 0 \),

\[
\left[\sum_{s \in S} p(s) \right]^{-1} < (1 + i)
\]

Interest rate is too low relative to NIRC.

In fact, CB always finds optimal to set \(\kappa(s) > 0 \) for all \(s \).
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

- Invest it in domestic risk free bond:

 Cost today: 1 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

- Invest it in domestic risk free bond:

 Cost today: \(1 \)
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- Replicate that payoff abroad:

 Cost today:
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

- Invest it in domestic risk free bond:

 Cost today: \(1 \)
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- Replicate that payoff abroad:

 Cost today: \(\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right] \)
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

- Invest it in domestic risk free bond:

 Cost today: \(1 \)
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- Replicate that payoff abroad:

 Cost today: \(\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right] \)
 Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- If \(\sum_s q(s) \left(\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right) \neq 1 \Rightarrow \)
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

• Invest it in domestic risk free bond:

Cost today: 1
Benefit tomorrow: $\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\}$

• Replicate that payoff abroad:

Cost today: $\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right]$
Benefit tomorrow: $\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\}$

• If $\sum_s q(s) \left(\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right) \neq 1 \Rightarrow$

 • Note $\Delta(i) > 0 \iff \sum_{s \in S} q(s)(e_1(1 + i)\frac{1}{e_2(s)}) > 1$
A key condition: arbitrage return on risk-free bond

Investor with one unit of the consumption good

• Invest it in domestic risk free bond:

Cost today: 1

Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

• Replicate that payoff abroad:

Cost today: \(\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right] \)

Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

• If \(\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right)^{(1+i)-1} \frac{1}{e_2(s)} \right] \neq 1 \)

• Note \(\Delta(i) > 0 \iff \sum_{s \in S} q(s) \left(e_1(1 + i) \frac{1}{e_2(s)} \right) > 1 \)
Investor with one unit of the consumption good

- Invest it in domestic risk free bond:

 Cost today: \(1 \) Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- Replicate that payoff abroad:

 Cost today: \(\sum_s q(s) \left[\left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right] \) Benefit tomorrow: \(\left\{ \left(\frac{e_1}{\sum_s p(s)} \right) \frac{1}{e_2(s)} \right\} \)

- If \(\sum_s q(s) \left(\left(\frac{e_1}{\sum_s p(s)^{(1+i)-1}} \right) \frac{1}{e_2(s)} \right) \neq 1 \)

- Note \(\Delta(i) > 0 \iff \sum_{s \in S} q(s)(e_1(1+i)\frac{1}{e_2(s)}) > 1 \)
Trade deficits and net foreign assets:

\[c_1 - y_1 = \sum_s p(s) a^*(s) \frac{e_1}{e_1} - \sum_s q(s) [f(s) + F(s)] \]
Equilibrium Definition

Take a given \((i, e_1, \{e_2(s)\})\)

Equilibrium

HH’s consumption, \((c_1, \{c_2(s)\})\), and asset positions, \((\{a(s), f(s)\})\); Intermediaries consumption, \(\{d_1^*, d_2^*(s)\}\), and asset positions \(\{a^*(s), f^*(s)\}\); central bank transfers \(\{T_2(s)\}\), asset and liabilities \(\{A(s), F(s)\}\) ; and domestic asset prices \(\{p(s)\}\), such that:

1. HH and Intermediaries maximize taking prices as given,
2. the central bank budget constraint holds, and
3. the domestic financial markets clear:

\[a(s) + a^*(s) + A(s) = 0 \quad \forall s \in S \]