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Abstract

We evaluate the asset pricing implications of a class of models in which risk sharing
is imperfect because of limited enforcement of intertemporal contracts. Lustig (2004)
has shown that in such a model the asset pricing kernel can be written as a simple
function of the aggregate consumption growth rate and the growth rate of consumption
of the set of households that do not face binding enforcement constraints. These uncon-
strained households have lower consumption growth rates than all other households in
the economy. We use household data on consumption growth from the U.S. Consumer
Expenditure Survey to identify unconstrained households, to estimate the pricing kernel
implied by these models and evaluate their performance in pricing aggregate risk. We
find that for high values of the relative risk aversion coefficient, the limited enforcement
pricing kernel generates a market price of risk that is substantially closer to the data
than the one obtained using the standard complete markets asset pricing kernel.
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1 Introduction

Consumption-based asset pricing kernels derived under the complete risk sharing, repre-

sentative agent (RA) assumption have a hard time explaining the observed large equity

premium (see e.g. Mehra and Prescott, 1985). Models in which the sharing of idiosyncratic

risk is limited have the potential to solve the puzzle (see for example Constantinides and

Duffie, 1996). In these models, the asset pricing kernel, in general, does not only depend

on aggregate consumption but also on the entire distribution of consumption across agents.

Different models provide different links between the distribution of consumption and as-

set pricing kernels. An important task is to evaluate whether these models are useful in

solving the equity premium puzzle. Recently some studies have done work along this line,

either evaluating several types of incomplete risk sharing models (see for example Attanasio,

Banks and Tanner, 2002, Brav, Constantinides and Geczy, 2002, Vissing-Jorgensen, 2002

and Kocherlakota and Pistaferri, 2006) or exploring the empirical link between asset prices

and higher moments of the consumption growth distribution (Cogley, 2002).

This paper contributes to this research agenda. It evaluates the asset pricing implica-

tions of a class of models in which risk sharing is imperfect because of the limited enforce-

ment (henceforth LE) of intertemporal contracts, as in Thomas and Worrall (1988) or Kehoe

and Levine (1993). No restrictions are imposed on the menu of traded assets. Alvarez and

Jermann (2001) have explored the asset pricing implications of LE in a two agent economy,

but they have not evaluated its empirical implications for the cross-sectional distribution of

consumption and asset prices. Lustig (2004) has shown that in a version of this model with

a continuum of agents the asset pricing kernel can be written as a simple function of the

growth rate of consumption of the set of households that do not face binding enforcement

constraints in the current state of the world. These unconstrained households have lower

consumption growth rates than households that face binding enforcement constraints. This

implication of the model allows us to identify unconstrained households as those in the
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lower tail of the cross-sectional consumption growth distribution.

We construct the LE pricing kernel using data on household consumption expenditures

from the U.S. Consumer Expenditure Survey (CE) and evaluate its performance in pric-

ing aggregate risk. We show that the LE pricing kernel can be estimated using a simple

modification of the standard RA pricing kernel. As documented in previous studies, the

RA pricing kernel only explains a small part of the equity premium. The power of the

LE pricing kernel depends crucially on how we identify unconstrained households but, in

general, it explains a larger fraction of the equity premium than the RA pricing kernel.

2 The Model

We consider a pure exchange economy with a continuum of agents that face aggregate and

idiosyncratic endowment shocks, trade state-contingent claims to consumption on compet-

itive markets and face solvency constraints that limit the extent to which agents can go

short in these consumption claims. In this section we first describe the underlying physical

environment and the market structure, then we define a competitive equilibrium and finally

we provide a characterization of the asset pricing kernel implied by this model.

2.1 Physical Environment

We denote the current aggregate shock by zt ∈ Z and the current idiosyncratic shock by

yt ∈ Y , with Z and Y finite. Let zt = (z0, . . . , zt) and yt = (y0, . . . , yt) denote the history

of aggregate and idiosyncratic shocks. We use the notation st = (yt, zt) and st = (yt, zt)

and let the economy start at initial node z0. Conditional on idiosyncratic shock y0 and thus

s0 = (y0, z0), the probability of a history st is given by πt(st|s0). Individual endowments

are given by et(st).

At time 0 households are indexed by their idiosyncratic income shock y0 and their initial

asset position a0. We denote by Θ0(y0, a0) the initial distribution of agents over (y0, a0); this
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initial distribution, together with the initial aggregate shock z0 serves as initial condition

for our economy.

Consumers rank stochastic consumption streams
{
ct(a0, s

t)
}

according to

U(c)(s0) =
∞∑

t=0

∑
st≥s0

βtπ(st|s0)
ct(a0, s

t)
1− γ

1−γ

(1)

where γ > 0 is the coefficient of relative risk aversion and β ∈ (0, 1) is the constant time

discount factor.

2.2 Market Structure

Households can trade a complete set of contingent consumption claims
{
at(a0, s

t, st+1)
}

at

prices qt(st, st+1). Thus their budget constraints read as

ct(a0, s
t) +

∑
st+1

qt(st, st+1)at(a0, s
t, st+1) = et(st) + at−1(a0, s

t) (2)

These trades are subject to solvency constraints
{
J(a0, s

t, st+1)
}

such that

−at(a0, s
t, st+1) ≤ J(a0, s

t, st+1) (3)

The solvency constraints, precisely spelled out below, are not too tight, in the sense of

Alvarez and Jermann (2000): a household that has borrowed exactly up to the constraint

(that is −at(a0, s
t, st+1) = J(a0, , s

t, st+1)) is indifferent between defaulting on her debt

(and suffering the corresponding consequences spelled out below) and repaying (and thus

avoiding these consequences). In the standard complete markets model J(a0, s
t, st+1) = ∞,

since in that model households can fully commit to repay any debt they take on.2

Denote by V (a, st) the maximized continuation expected lifetime utility an agent can
2Of course, even in this model an appropriately chosen no-Ponzi constraint is needed to make the house-

hold decision problem well-defined.
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attain, if she comes into the current period with assets at−1(a0, s
t) = a and faces constraints

(2) and (3). Furthermore let V Aut(st) denote the expected lifetime utility of an agent from

consuming the autarkic allocation ct(a0, s
t) = et(st) from node st on.3 Finally let ca

t denote

aggregate consumption (equal to the aggregate endowment). The market clearing condition

reads as

∑
st

∫
ct(a0, s

t)π(st|s0)dΘ0 =
∑
st

∫
et(st)π(st|s0)dΘ0 ≡ ca

t (z
t) for all zt. (4)

2.3 Equilibrium

We are now ready to define an equilibrium for this economy.

Definition 1 Given z0 and an initial distribution Θ0(y0, a0), an equilibrium with solvency

constraints
{
J(a0, s

t, st+1)
}

that are not to tight are consumption and asset allocations{
ct(a0, s

t), at(a0, s
t, st+1)

}
and prices

{
qt(st, st+1)

}
such that

1. Given prices
{
qt(st, st+1)

}
and constraints

{
J(a0, s

t, st+1)
}

, for all (y0, a0) allocation{
ct(a0, s

t), at(a0, s
t, st+1)

}
maximizes (1) subject to (2) and (3).

2. The solvency constraints are not too tight, that is, satisfy, for all (y0, a0) and all st+1,

V (J(a0, s
t, st+1), st+1) = V Aut(st+1).

3. Market clearing: Equation (4) holds.

2.4 Characterization of Equilibria

Let (y0, a0) denote the characteristics of a generic household. In order to characterize

equilibrium consumption allocations and the pricing kernel we make use of cumulative
3The specification of the outside option as autarky is done for simplicity. Any other specification of the

outside option that is only a function of (a, st) gives rise to the same characterization of the asset pricing
kernel derived below.

4



Lagrange multipliers {ξt(y0, a0)}, in the spirit of Marcet and Marimon (1998). In period

0 there is a one to one map between Lagrange multipliers ξ0 and initial wealth a0. Thus

let the initial distribution of Lagrange multipliers associated with the distribution of initial

wealth Θ0(y0, a0) be denoted by Φ0(y0, ξ0). Henceforth we will use the notation ξt(y0, a0)

and ξt(y0, ξ0) interchangeably. Over time these Lagrange multipliers increase whenever

the solvency constraint of a household binds, and remains unchanged otherwise. Crucially,

this implies that for all agents that are unconstrained in a current state, their Lagrange

multipliers all remain unchanged.

As shown by Lustig (2004) the consumption process of a given household is related to

aggregate consumption (endowment) by the risk sharing rule

ct(ξ0, s
t) =

[
ξt(ξ0, s

t)
]1/γ ca

t (z
t)

ht(zt)
(5)

where

ht(zt) =
∫ [

ξt(ξ0, s
t)

]1/γ
dΦt

and Φt is the cross-sectional measure over consumption weights (Lagrange multipliers)

ξt(ξ0, s
t) in period t, state zt.

To rule out arbitrage opportunities, payoffs in state zt+1 are priced off the intertemporal

marginal rate of substitution (IMRS) of those agents who do not face any binding constraints

in transferring resources to and from that state (see Alvarez and Jermann, 2000). Let

UC(st, st+1) denote the set of these agents. The stochastic discount factor is the IMRS of

those agents with labels ξ∗0 ∈ UC(st, st+1), who are unconstrained in state st in their sale

of securities that deliver goods in state st+1 :

mLE
t+1(z

t+1) = β

(
ct+1(ξ∗0, s

t+1)
ct(ξ∗0, st)

)−γ

The risk sharing rule in (5) and the fact that for all unconstrained agents the consumption
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weights do not change ξt+1(ξ
∗
0, s

t+1) = ξt(ξ
∗
0, s

t) then immediately imply that the pricing

kernel is given by:

mLE
t+1(z

t+1) = β

(
ca
t+1(z

t+1)
ca
t (zt)

)−γ [
g(zt+1)

]γ (6)

where g(zt+1) = ht+1(zt+1)
ht(zt) . Note that in the standard complete markets model the solvency

constraints are never binding, thus the distribution of consumption weights (Lagrange mul-

tipliers) is never changing, and consequently ht+1(zt+1) = ht(zt) and g(zt+1) = 1 for all

zt+1. Therefore, we recover the well-known stochastic discount factor of the RA model

mRA
t+1(z

t+1) = β

(
ca
t+1(z

t+1)
ca
t (zt)

)−γ

(7)

The only effect of LE on asset prices is the component contributed by the shocks to the

cross-sectional distribution of consumption weights ht+1(zt+1)/ht(zt).

2.5 Implementation

In order to generate an empirical time series for the LE stochastic discount factor in (6)

from cross-sectional consumption data we need to estimate the aggregate consumption

growth rate (readily available from NIPA) and the growth rate of the consumption weight

distribution:

g(zt+1) =
ht+1(zt+1)

ht(zt)
.

From the risk sharing rule in (5) we know that this moment of the consumption weight

distribution satisfies:

ht(zt) =
[
ξt(ξ0, s

t)
]1/γ ca

t (z
t)

ct(ξ0, s
t)
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For all unconstrained households the consumption weight does not change in state st+1, i.e.

ξt+1(ξ0, s
t+1) = ξt(ξ0, s

t), and hence their consumption growth rate satisfies:

g(zt+1) =
ht+1(zt+1)

ht(zt)
=

ca
t+1(z

t+1)
ca
t (zt)

∗ ct(ξ0, s
t)

ct+1(ξ0, s
t+1)

All unconstrained households have the same growth rate of consumption

ct+1(ξ0, s
t+1)

ct(ξ0, s
t)

=
ca
t+1(z

t+1)/ht+1(zt+1)
ca
t (zt)/ht(zt)

:= gUC(zt+1) or

g(zt+1) =
(

ct+1(ξ0, s
t+1)/ca

t+1(z
t+1)

ct(ξ0, s
t)/ca

t (zt)

)−1

=
ga(zt+1)

gUC(zt+1)
, (8)

where ga(zt+1) is the growth rate of aggregate consumption and gUC(zt+1) is the common

consumption growth rate of currently unconstrained households. Expression (8) suggests

that the term g(zt+1) can be measured using the consumption growth of unconstrained

households gUC(zt+1) relative to the growth rate of aggregate consumption. The key ques-

tion we deal with in the next section is how to identify unconstrained households in the

data.

3 Testing the Empirical Asset Pricing Implications

3.1 Data

The crucial difference between the RA and the LE pricing kernel is that the former can be

estimated using aggregate consumption data while for the latter we need to measure the

consumption growth rate of a specific group of households (the unconstrained). Therefore

household level consumption growth data is needed. The U.S. Consumer Expenditure

Survey provides such data since the majority of households sampled in this data set reports

consumption expenditures for at least two subsequent quarters.

We use quarterly data from 1980.1 to 2006.1. For each quarter t we select all house-
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holds which are complete income respondents and which report positive expenditures on

nondurable goods and services for quarters t and t + 1. For each household we then com-

pute quarterly growth rates of real (each component is deflated with specific CPI’s), per-

adult equivalent expenditures on nondurables (this includes nondurable goods and services,

excluding services from housing). We have a total of 307778 consumption growth rate

observations.4

The return data comes from the CRSP (the Center for Research on Securities Prices).

As stock returns we use the quarterly value-weighted return on the entire US market

(NYSE/AMEX/NASDAQ), deflated by the inflation rate computed from the Consumer

Price Index by the Bureau of Labor Statistics. Bond returns are based on the average yield

of a 3-month US T-bill, again deflated by the CPI.

3.2 Empirical Construction of the Asset Pricing Kernels

The model predicts that in each period all unconstrained agents share the same consump-

tion growth rate, and that this growth rate is the lowest growth rate across all households.

So, interpreting the model literally, one could obtain ĝ(zt+1), the empirical estimate of

g(zt+1) over the period 1980.1-2005.4, as simply the ratio between the average consump-

tion growth rate and the minimum (across households) consumption growth rate in a given

quarter. Obviously in the data there is significant measurement error in consumption. Also,

consumption growth in the data is likely to depend on idiosyncratic events (for example

changes in personal health, or educational expenses) which are not explicitly considered

in our model. For these reasons this procedure would not be a very robust way of se-

lecting the relative consumption growth of unconstrained households. Instead we identify

unconstrained households as all households having consumption growth lower than a certain
4Due to a change in the household sample there are no observations in the last quarter of 1985. For more

details on the deflation method and on the categories included in nondurable consumption expenditures see
appendix A in Krueger and Perri (2006)
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treshold ḡ(zt+1) and then we obtain the following estimate for g(zt+1)

ĝ(zt+1) =
ĝa(zt+1)

ĝUC(zt+1)
=

P
i ci(z

t+1)P
i ci(zt)P

i∈U ci(zt+1)P
i∈U ci(zt)

where U(zt+1) = {i :
ci(zt+1)
ci(zt)

≤ ḡ(zt+1)}

An important issue is how to set the threshold ḡ(zt+1). We start with a natural initial

guess which is ḡ(zt+1) = ĝa(zt+1) (so that unconstrained households in a given quarter

are all households who report consumption growth lower than aggregate growth in that

quarter); we also experiment with other possibilities. Once ĝ(zt+1) has been constructed

using CE household data and deseasonalized, it is easy to construct a time series for the

LE pricing kernel according to (6). For a given risk aversion γ, time discount factor β and

aggregate growth rate of consumption
ca
t+1(zt+1)

ca
t (zt) the LE pricing kernel is given by

m̂LE
t+1(γ, β) = β

(
ca
t+1(z

t+1)
ca
t (zt)

)−γ

(ĝt+1)
γ (9)

where the aggregate growth rate of consumption is constructed using deseasonalized NIPA

consumption data.5

Below we discuss the asset pricing properties of m̂LE
t+1(γ, β) together with those of the

stochastic discount factor of the standard representative agent model, m̂RA
t+1(γ, β), which

can be estimated using only NIPA data and is given by

m̂RA
t+1(γ, β) = β

(
ca
t+1(z

t+1)
ca
t (zt)

)−γ

.

5The definition of NIPA consumption used to compute the aggregate consumption growth rate includes
real expenditures on nondurable goods and services (excluding housing). It therefore includes the same
categories of consumption expenditures used to estimate the relative growth rate of consumption of uncon-
strained households.
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3.3 Results

In this section we evaluate the performance of the two stochastic discount factors discussed

above in explaining the equity premium for different values of the risk aversion parameter

γ and under different assumptions for the identification of unconstrained agents. For each

specification (including the representative agent stochastic discount factor) we set the time

discount factor β so that the sample mean of the estimated stochastic discount factor E(m̂)

is equal to 1. With this normalization6 we can write fe(m̂), the fraction of the equity

premium that is being explained by the stochastic discount factor m̂, as

fe(m̂) = 1−
E

[
m̂

(
RS −RB

)]
E [RS −RB]

= −Corr(m̂,RS −RB)cv(m̂)cv(RS −RB)

where RS
t+1 and RB

t+1 denote the gross real return on equity and a risk-free bond, and

Corr denotes the correlation coefficient, and cv denotes the coefficient of variation. Thus

to explain a large fraction of the equity premium we need a stochastic discount factor that

is negatively correlated with the equity premium and which has high percentage volatility.

The first panel of figure 1 plots the realized excess return on equity RS − RB and the

representative agent stochastic discount factor m̂RA
t+1(γ, β) (in percentage deviations from

its mean) for a value of γ = 1.

The stochastic discount factor is indeed negatively correlated with the realized equity

premium but its percentage volatility is very low and hence the resulting fraction of the

equity premium it can explain is low. The second panel plots again the realized excess

equity return together with the limited enforcement stochastic discount factor m̂LE
t+1(γ, β)

for a value of γ = 1. Note how m̂LE
t+1(γ, β) is also negatively correlated (albeit less than

m̂RA
t+1(γ, β) ) with the realized equity premium but at the same time it is significantly

more volatile than m̂RA
t+1(γ, β). With low risk aversion the higher (relative to m̂RA

t+1(γ, β) )

6This normalization essentially guarantees that all stochastic discount factors we consider are consistent
with the empirically observed risk-free interest rate.
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Figure 1: Stochastic discount factors (γ = 1) and realized equity premium

volatility of m̂LE
t+1(γ, β) is offset by the lower absolute value of its correlation with the equity

premium so roughly the 2 discount factors have the same (low) explanatory power. With

high risk aversion though the differences in volatilities between m̂LE
t+1(γ, β) and m̂RA

t+1(γ, β)

are amplified and the limited enforcement discount factor can explain a significantly larger

fraction of the observed equity premium.

Figure 2 plots the equity premium explained by LE stochastic discount factors estimated

in three different ways and by the standard RA stochastic discount factor, as we vary

the coefficient of risk aversion from 1 to 80. The differences among the three LE curves

lie in how we identify unconstrained agents. The curve labeled baseline is constructed

defining unconstrained households in a given quarter as those with consumption growth is

below average consumption growth in that quarter. The other two LE curves (labeled 95%

and 105%) are constructed defining unconstrained households as those whose consumption

growth is below 95% of aggregate consumption growth rate or below 105% of the aggregate

consumption growth rate. The figure also displays the average equity premium in the data,

which for our sample is around 1.8% per quarter. Notice how for low and moderate levels
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Figure 2: Quarterly equity premium: observed and predicted by models

of risk aversion all discount factors fail to account for a substantial fraction of the premium.

However, for higher risk aversion the LE model can explain a significantly larger fraction of

the observed equity premium than the RA model: for example with a relative risk aversion

of around 60 the LE model can explain all the premium while the RA model only explains

half of it.

4 Conclusion

The consumption-based asset pricing model relying on the representative agent construct

has a hard time accounting for the observed equity premium. In this paper we assess how

introducing limited enforcement of inter-temporal contracts improves the empirical perfor-

mance of the consumption-based asset pricing model. In a LE model with a continuum

of households the standard stochastic discount factor is augmented by an additional term
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which depends on the consumption growth of households in the left tail of the cross-sectional

consumption growth distribution. The reason for this is that agents with low consumption

growth are unconstrained and thus it is their consumption growth, as opposed to the ag-

gregate consumption growth, which should price equity. We put forth a first attempt of

measuring this extra term using household consumption data and find that the LE pricing

kernels can account for a larger share of the empirically observed equity premium, relative

to the RA model. However, in order to account for the entire premium the LE model still

needs a coefficient of risk aversion of around 60, which many would view as implausibly

large.

We interpret our results as mixed news for the asset pricing properties of the LE model.

On one hand they suggest that when one uses micro consumption data to evaluate the asset

pricing properties of the LE model results are not as satisfactory as, say, those obtained

by Alvarez and Jermann (2001) using a calibrated version of the model with two agents.

On the other hand the fact that the LE model performs better, along certain dimensions,

than the standard RA model suggests that making use of individual consumption data, as

opposed to just aggregates, might give us a better understanding of how aggregate risk is

priced.

Future work is needed to assess how a careful modelling of measurement error in indi-

vidual consumption growth would affect the empirical estimation and performance of the

proposed asset pricing kernel, and to investigate whether the LE model can shed further

light on other well-documented asset pricing puzzles (such as the value premium puzzle).

13



References

[1] Alvarez, Fernando and Urban Jermann (2000), “Efficiency, Equilibrium, and Asset
Pricing with Risk of Default,” Econometrica, 68, 775-798

[2] Alvarez, Fernando and Urban Jermann (2001), “Quantitative Asset Pricing Implica-
tions of Endogenous Solvency Constraints,” Review of Financial Studies, 14, 1117-
1151

[3] Attanasio, Orazio, James Banks and Sarah Tanner (2002), Assets Holding and Con-
sumption Volatility,Journal of Political Economy,110, 771-792.

[4] Brav, Alon, George Constantinides and Christopher Geczy (2002), “Asset Pricing with
Heterogeneous Consumers,” Journal of Political Economy, 110, 793-824.

[5] Cogley, Tim (2002), “Idiosyncratic Risk and the Equity Premium: Evidence from the
Consumer Expenditure Survey,” Journal of Monetary Economics, 49, 309-334.

[6] Constantinides, George and Darrell Duffie, “Asset pricing with heterogeneous con-
sumers” (1996), Journal of Political Economy, 104, 219-240.

[7] Kehoe, Tim and David Levine (1993), “Debt Constrained Asset Markets,” Review of
Economic Studies, 60, 865–888.

[8] Kocherlakota, Narayana and Luigi Pistaferri (2005), “Asset Pricing Implications of
Pareto Optimality with Private Information,” Working paper, University of Min-
nesota.

[9] Krueger, Dirk and Fabrizio Perri (2006), “Does Income Inequality lead to Consumption
Inequality? Evidence and Theory” Review of Economic Studies, 73, 163-193.

[10] Lustig, Hanno (2004), “The Market Price of Aggregate Risk and the Wealth Distribu-
tion,” Working paper, UCLA.

[11] Marcet, Albert and Ramon Marimon (1998), “Recursive Contracts,” Working paper,
Universitat Pompeu Fabra.

[12] Mehra, Rajnish and Edward Prescott (1985), “The equity premium: A puzzle” Journal
of Monetary Economics 15, 145-61

[13] Thomas, Jonathan and Tim Worrall (1988), “Self-Enforcing Wage Contracts,” Review
of Economic Studies, 55, 541-554.

[14] Vissing-Jorgensen, Annette (2002), “Limited Asset Market Participation and the Elas-
ticity of Intertemporal Substitution”, Journal of Political Economy, 110, 825–53.

14


