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Abstract

We develop an ECON-EPI network model to evaluate policies designed to improve health and

economic outcomes during a pandemic. Relative to the standard epidemiological SIR set-up,

we explicitly model social contacts among individuals and allow for heterogeneity in their

number and stability. In addition, we embed the network in a structural economic model

describing how contacts generate economic activity. We calibrate it to the New York metro

area during the 2020 COVID-19 crisis and show three main results. First, the ECON-EPI

network implies patterns of infections that better match the data compared to the standard

SIR. The switching during the early phase of the pandemic from unstable to stable contacts

is crucial for this result. Second, the model suggests the design of smart policies that reduce

infections and at the same time boost economic activity. Third, the model shows that re-

opening sectors characterized by numerous and unstable contacts (such as large events or

schools) too early leads to fast growth of infections.
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1 Introduction

The COVID-19 pandemic of 2020 presented a formidable challenge to policymakers: for

the first time in decades they faced a trade-off between epidemiological costs (lives) and

economic costs (livelihoods). The key question that motivates this paper is how to design

smart policies which are effective in reducing the spread of the disease while at the same

time minimizing economic costs.

Our point of departure is that the spread of infections and economic activity happen

through the same network of human interactions. We develop an ECON-EPI network model

of a city, characterized by three components. The first one is the network of human in-

teractions that specifies contacts among individuals through different network layers. The

second one is the ECON component, which describes how economic activity is created on

the network. The last one is the EPI component, specifying how the disease spreads through

individuals across the city.

When a pandemic hits, several links of the network are severed, either as a consequence

of mitigation policies or because individuals change their behavior as a response. Our key

insight is that the dynamic consequences, both in terms of infections and economic outcomes,

strongly depend on the type of links that are severed. Cutting certain types of links has a

large impact on infections and a relatively small economic cost, while cutting other types has

only a marginal impact on the infection levels but large economic costs. We find that the

ECON-EPI network is a useful framework to understand and measure the epidemiological

and economic costs of limiting different types of social interaction, and therefore it provides

guidance in designing effective policies to control the pandemic while preserving economic

activity.

We start by describing a multilayered network model, of the type commonly used in the

epidemiological literature. Individuals in the network differ in several dimensions (such as

age, family structure and work characteristics) and interact with each other through different

network layers. These layers capture the main contexts of interaction among individuals in

a city, such as homes, neighborhoods, schools, public transportation, stores, entertainment

venues, and workplaces. These different social contexts are also often the target of actual

mitigation policies aimed at limiting the extent of interaction allowed (such as the closure of

schools, the limits on large gatherings, or the shut down of non-essential businesses). Some

layers (such as family and neighborhood) feature frequent and repeated interactions among

a small set of individuals. Other layers (such as public transportation or shopping venues)

feature less frequent and more randomized contacts among a larger set of individuals. These
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differences play a critical role in the speed of diffusion of the disease throughout the city,

more numerous and random contacts leading to faster spreading.

Next we introduce the EPI component, which describes the dynamics of the disease. We

model the progression of the disease as in the standard Susceptible-Infected-Recovered (SIR)

model, while allowing for heterogeneity among infected individuals in the manifestation of

symptoms and in the transmissibility upon contact. If we interpret the individuals in the

economy as nodes in the network, we can express the key difference between the standard SIR

set-up and our network model in terms of the infection probability of susceptible nodes. In

the SIR set-up, this probability is the same for all nodes and depends on the average number

of infected nodes in the system. In the network set-up, it differs across nodes, and for each

node it depends on its own fraction of infected connections. This difference is crucial to

understand why the SIR and the network model generate very different infection dynamics.

The last component of the network model is the ECON one, which specifies the details

of production and the links between workers and shoppers. In the economy, a homogenous

final good is produced in establishments by a stable team of workers and by capital. Each

establishment belongs to one of two sectors: High-contact and Low-contact (H- and L-

henceforth). These two sectors are a parsimonious way of classifying actual sectors into

two groups depending on the strength of the link between production and spreading of

the disease. In order to identify these sectors, we use information from the Occupation

Information Network (ONET) database to construct measures of physical proximity and

frequent interaction between workers and customers in each 2 digit NAICS sector. We

then classify the actual sectors that score above the average in both measures as belonging

to the H-sector. Examples of these sectors are retail, food, accommodation, and health.

Production in the H-sector is likely to cause fast spreading in a pandemic for two reasons.

First, H-workers cannot produce from home and thus are more exposed to the disease.

Second, as they have numerous and randomly selected daily contacts with customers, they

are more likely to spread the disease. The remaining sectors are classified as belonging to the

L-sector. In the L-sector, production involves minimal physical proximity and/or interaction

with customers. These features imply that production in the L-sector has less impact on

infection spreading for two reasons. First, workers in the L-sector have fewer and more

stable contacts as they only interact with other workers in their team. Second, a significant

fraction of them has the ability to work from home. In addition to the difference in spreading

potential, we allow the H and L sector to differ in terms of the marginal product of each

worker, so that we can evaluate more accurately the effect on output of shut-down policies
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that target different sectors.

One important feature of the ECON component is that we explicitly model the productive

role of customers by assuming that production in the H-sector requires both workers and

customers. While workers in the H-sector are only a subset of the population, customers are

drawn from the entire population, as every individual in the city shops. This implies that

when a pandemic hits and most people severely limit their interactions (either because of

shut-down policies, quarantine, or fear) there are two effects on production. The first one is

the direct supply effect that reduces production because workers cannot work. The second

one is the indirect demand effect, that reduces output because customers do not show up at

H-sector establishments where they are an essential factor of production.

We next define a pre-pandemic city equilibrium where heterogeneous workers are allocated

efficiently across different establishments and where the shopping capacity of the H-sector

satisfies the demand of shopping trips by the population. Using restrictions from the pre-

pandemic equilibrium together with sector level data from the New York-Newark-Jersey City

(NY-NJ-PA) metro area, we can pick values for the parameters that fully characterize the

ECON-component. Before we can use our set-up to conduct policy experiments, we need

to pin down two additional set of parameters. The first is the number of contacts between

different types of nodes before and during the pandemic. The second is the set of parameters

that governs disease progression and transmission (the EPI component). We use the seminal

work of Mossong et al. (2008) to pin down the amount of contacts in the pre-pandemic

equilibrium, and data from Google Mobility reports to capture the reduction in contacts

during the pandemic. Regarding the EPI component, we calibrate its parameters using both

evidence from epidemiological studies and by matching key moments of the infection’s early

phase in the NY-NJ-PA metro area.

Finally, we use the fully calibrated model to perform a number of experiments. The first

experiment compares the dynamics of infection in our set-up with the standard SIR set-up,

where meetings among individuals are randomly drawn across the whole population (as in,

for example, Atkeson 2020 or Eichenbaum et al. 2021). We put the two models on equal

footing by choosing parameters in both models to match the dynamics during the early

phase (March 8th - April 3rd 2020) of the pandemic in the NY-NJ-PA metro area. We

then compare their predictions for the second phase of the pandemic (April 3rd - April 26th

2020) with the data, imposing in both models the same reduction in contacts, calibrated

from the Google Mobility reports. The main result is that the standard SIR model implies a

counterfactually fast spreading of the infection, while the network set-up predicts a plateau
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of infections, as observed in the data. The reason for this difference is that in the SIR set-

up new infections depend on the average fraction of infected nodes in the system so, once

total infections reach a critical level (as they did in New York), it progresses rapidly until

herd immunity is reached. In the network model, however, infections depend on the number

and type of local contacts. Therefore, it is possible that some areas of the network remain

untouched by the infection, while at the same time the disease dies out in other areas due

to herd immunity at a “local” level.

Our second experiment uses the ECON-component of the model more intensively to study

“smart” mitigation policies that can achieve better outcomes during the lock-down phase.

We believe that insights about lockdown policies will be useful to manage future pandemics.

We find that policies that reduce the workers shutdown in the L-sector, while at same time

increase the workers shutdown in the H-sector can, under some circumstances, achieve a

double gain; that is, reduce the spreading of the disease and simultaneously reduce the

output loss. It is immediate to see that such policies slow down the spread of the infection.

The outcome for output depends on the relative marginal product of labor in the two sectors,

which in turn is a function of the amount of capital and of the intensity of the shutdown in

each sector. We show that in our NY-NJ-PA metro area case study, for the observed level

of shutdown and for the calibrated level of capital in the two sectors, a policy involving a

substantial double gain (reduction in infection cases equal to 2% of the population and 2%

increase in output) could have been implemented.

Our third and final set of experiments concerns the reopening of the business sectors and

schools, once the first pandemic wave has passed its peak. We find that the choice of which

sector to reopen is crucial. A broad reopening, which includes the H sector and the schools,

at a time when the level of infections is still significant in the city inevitably leads to a

large second wave. Our set-up suggests a reopening strategy that significantly mitigates a

second wave of infections, and, at the same time, allows a partial recovery of output. In

particular a strategy of keeping both the H-sector and the schools only partially shutdown

is very effective in reducing the growth of infections during a second wave.

There are three important lessons that we learn from ECON-EPI networks. First, the

micro structure of the network is essential to understand and predict aggregate infection

and economic dynamics in response to a pandemic shock (or any other shock that severs

interactions). When connections are random and unstable across the network (like in the

standard SIR model), an infectious disease spreads and dies out fast. The ECON-EPI

connection thus implies that the economic impact of a pandemic will be large but short
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lived. When connections are instead clustered and repeated, the same disease stays local,

spreads slowly but also takes a long time to die out. This implies that the economic impact

of a pandemic will be long lasting. Layers in our ECON-EPI network lie in between these

two extremes, with some layers (the H-sector) being random and unstable and some others

(like the family) being more clustered and stable. The dynamics of infection and of economic

activity in a city depends on the relative importance of these layers, and on their connections

and policies geared to contain infections are most effective when they can target different

layers separately.

Second, in order to assess the economic cost of policies aimed at containing the infection

it is important to specify the micro structure of production. The cost of shutting down a

worker is its marginal product. In an undistorted equilibrium, marginal product is captured

by the wage; however, during widespread shutdowns like those observed during the COVID-

19 pandemic, marginal product can be different (and higher) than the wage, and thus the cost

of alternative shutdown policies can be assessed only by specifying the details of production.

Finally, our set-up suggests that there are important complementarities between various

types of mitigation policies. For example, we find that when people adopt practices that

reduce the transmissibility of the disease (e.g. wearing face-masks), policies that reduce

contacts are more effective. A key insight is that the use of a structural model of interaction

is necessary to understand and quantify the extent of these complementarities.

The paper is structured as follows. Section 2 summarizes the related literature. Sections

3 and 4 describe the ECON-EPI network and our calibration strategy. Section 5 shows how

the network model can help explain the data. Section 6 discusses the policy experiments

and Section 7 concludes.

2 Connection to existing literature

The COVID-19 pandemic has spurred a new and fast growing literature at the interface

between epidemiology and economics, studying the effects, both on infection and economic

outcomes, of different policies geared to containing the spreading of the disease.

A first generation of papers has modeled the epidemiological component using versions of

the standard SIR random mixing model by Kermack and McKendrick (1927). Examples of

these works include Acemoglu et al. (2021), Alvarez et al. (2021), Atkeson (2020), Eichen-

baum et al. (2021), Favero et al. (2020), Glover et al. (2021), Piguillem and Shi (2022) and

Jones et al. (2021).
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Modern research in epidemiology has moved beyond this classical framework to explicitly

model the patterns of interaction among agents, using “agent-based models.” A second

generation of papers in economics explored the role of heterogeneity across sectors and across

workers in the spreading of the infection and in designing efficient containment policies.

Here, see Kaplan et al. (2020), Leibovici et al. (2020), and Mongey et al. (2021).1 Arnon

et al. (2020), Acemoglu et al. (2020), Alfaro et al. (2020), Boppart et al. (2022), Farboodi

et al. (2021), Hur (2022), Engle et al. (2021) and Toxvaerd (2020) go one step further

and endogenize the intensity of interactions. By choosing their level of work, leisure, and

consumption, agents with different characteristics can affect their level of exposure to the

disease. We are related to these models in that agents have individual-specific infection

rates resulting from their specific roles in production and consumption. The main difference,

however, is that we model social interaction within a network framework.

There is strand of research in epidemiology that makes extensive use of network theory to

predict the pattern of infections in a city or in a country.2 One of the main contributions of

our paper is to integrate the network modeling of infection from epidemiology in an economic

model of a city, where the network plays an explicit role both in the transmission of infection

and in the creation of economic value. We now briefly discuss how our paper is different

from other recent and excellent works that also use network theory to study the COVID-19

pandemic. Karaivanov (2020) analyzes the diffusion of COVID-19 in an abstract network

and makes the point that transmission is different from the one in the standard SIR model.

However he restricts his attention to the epidemiological component. Akbarpour et al. (2020),

Baqaee et al. (2020) and Fajgelbaum et al. (2021) also use a network framework to analyze the

economic and epidemiological effects of containment and re-opening policies. Baqaee et al.

(2020) focus on aggregate (US) outcomes, while Akbarpour et al. (2020) and Fajgelbaum

et al. (2021) focus, as we do, on metro-level outcomes. There are two important differences

that distinguish our work from theirs. The first is that we model the network differently.

In their works the main heterogeneity across nodes rests on the number of contacts. Nodes

in our network, in addition to being heterogenous in terms of number of contacts, are also

heterogenous in terms of the pool from which they draw their daily contacts.3 This feature

1Dingel and Neiman (2020) and Benzell et al. (2020) take a more empirical approach to analyze the effects
of heterogeneity.

2See Keeling and Eames (2005) and Jackson (2010) for excellent surveys of the literature on networks in
epidemiology.

3This heterogeneity has been explored in Acemoglu et al. (2013), Acemoglu et al. (2010) and Azzimonti
and Fernandes (2022) in information networks. In Fajgelbaum et al. (2021), the pool of contacts depends
on the commuting behavior of individuals but not on their economic activity, as it does in our paper.
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of the contacts, which we refer to as “stability”, not only is empirically relevant, as it

captures the different degree of randomness of daily contacts in different occupations, but

is also quantitatively important to explain infection dynamics.4 The second difference is in

the modeling of the production structure. Both papers assume labor is the only factor of

production, while we use an establishment production function that, in addition to labor,

uses capital and (for retail establishments) customers as inputs. This production function

allows to evaluate the output costs of workers’ shutdown more accurately, as well as the

impact on output of the reduction in shopping contacts (i.e. demand effects).

3 The ECON-EPI network

We now describe the details of the ECON-EPI network, a model designed to capture human

and economic interaction in a typical US metropolitan area. We first present the network

structure, i.e. the links that connect individuals in their different activities. We then proceed

to specify the EPI component, i.e. how infections progress and spread through the network.

Finally, we describe the ECON component, i.e. how interactions in the network produce

output. In this part, we first specify a pre-pandemic steady state equilibrium, which describes

the normal state of economic affairs before the pandemic. We then discuss how the arrival

of a disease and the adoption of containment measures affect economic activity during the

pandemic period.

3.1 A multilayered network

We construct a multilayered network where individuals of different characteristics (age, em-

ployment status, public transportation usage, etc.) interact with each other. The set-up

is necessarily stylized. Nevertheless, it has enough richness to capture key aspects of the

social distancing policies that have been implemented during the 2020 COVID-19 pandemic.

Time is discrete and the network is generically represented by a M ×M , time varying, adja-

cency matrix Gt, where each node represents an individual. Individuals are heterogeneous

in several dimensions. In terms of age, there are adults and kids. Kids are a fraction νK

of total population and go to schools. In terms of employment characteristics, adults may

work in different sectors or be out of the workforce. Additionally, individuals differ in the

4Bisin and Moro (2022), while not explicitly using a network model, incorporate a spatial dimension
which generates local herd immunity. Their focus, however, is in the evolution of infections and completely
abstracts from the productive process. An important innovation of our work is to link the social network of
human contacts with the economic network determining production
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size of their household, their number of neighbors, and their use of public transportation.

We now proceed to describe the various layers connecting individuals. These layers affect

the probability for each individual of contracting and spreading the disease throughout the

network.

Households and Neighbors: Households can be composed by two adult members or

by 2 adults and a kid. Members of the same household are fully connected through intra-

household links. These links form the first layer of our network, contained in the adjacency

matrix GH . The left panel of Figure 1 shows an example of household links in a city

with 10 households, where the circles represent adult members and the stars represent kids.

Households are placed next to each other on a ring (as in Watts and Strogatz 1998), and

each type of household member (adult or kid) is connected to all the same member type of

N neighboring households on the left and on the right. The neighborhood links form the

second layer of our network and are recorded in the adjacency matrix GN . Household and

neighborhood links are ‘short-stable links,’ meaning that they are active at every point in

time, and connect individuals who are close to each other.

Household links School links

Figure 1: Households and Schools

Schools: Our third layer involves a school system where each day every kid interacts with

a subset of other kids in her school. Each school draws kids which live close to each other,
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and the school size Q determines the pool of potential interactions of each kid. We refer to

these links as “potential” school links and their associated adjacency matrix is denoted by

GS. Note that we refer to school links as “potential” because, in contrast to the links in

the first two layers, they are not always active: each kid has active links only with a subset,

which is randomly drawn every period, of her schoolmates. The right panel of Figure 1 shows

the active and inactive links for two schools (one of size 3 and one of size 2) for the same

example network in the left panel of the figure. We define school links as ‘short-unstable’

meaning that they connect individuals who are geographically close to each other, and that

they change their status (from active to inactive) over time. The reason for introducing this

layer is to later evaluate the effect of school closures and reopenings on the spreading of the

infection.

Public Transportation The next layer of the network specifies interactions through pub-

lic transportation. A fraction φ of individuals uses public transportation. Each public trans-

portation vehicle has a capacity of seating P individuals, and we assume that agents living

close to each other use the same public transportation vehicle. This implies that each indi-

vidual using public transportation is potentially connected to locally close individuals who

also use public transportation. Potential public transportation links are summarized in the

adjacency matrix GP . During each public transportation trip, each individual interacts with

a random subset of the vehicle occupants. Therefore, individuals who use public transporta-

tion will be more exposed to the disease than those who use private means of transportation.5

Like school links, public transportation links are short and unstable. The difference between

the two is that school links involve only kids, while public transportation connects adults as

well as kids.

Workplaces A fraction of adults in the network work. The workplace layer describes how

working adults interact with each other and with the rest of society. The city features two

distinct workplaces, which we label L (for Low-contact) and H (for High-contact). In the

L-workplace (which is meant to capture sectors like manufacturing) there are stable teams of

L-workers. In the H workplace (which is meant to capture sectors like retail or entertainment)

there are similar teams of workers, but these workers are also connected with a time-varying

subset of customers. We now describe in more detail the two workplaces.

5See Harris 2020 for a study on the role of public transportation in spreading the COVID-19 pandemic
in New York City
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L-Workplace L-Workers are a share νL of adults. Some of them (e.g. software developers)

have the opportunity of working from home, which they will use in different intensity before

and after the pandemic. The remaining members (e.g. assembly line workers) cannot work

from home, and they are all connected to each other when working. The lightly colored

nodes in panel (a) of Figure 2 are a team of L-workers. Note that two of them are connected

to each other, while one (labeled home worker) is not connected. For production purposes

the home worker is part of the team, but it can perform work without contact (and hence

without risk of contagion) with the other team members.

(a) L-workers team

(b) H-local workers team (c) H-global workers team

Figure 2: Workplaces

H-Workplace H-Workers are a share νH of adults and they work in establishments that,

for the purpose of production, involve stable contacts with co-workers (just like the L-

workers) as well as unstable contacts with external customers. During the 2020 COVID

pandemic, mitigation policies have not been uniform across establishment that involve con-

tact with customers. Activities in some of them, such us retail establishments, have only
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been lightly restricted, while in some others, like sports events, they have been severely

curtailed. For this reason we distinguish between two types of H-workplaces, which we la-

bel H-local and H-global. Panel (b) of Figure 2 illustrates a team of H-local workers. The

lightly colored nodes represent the members of the team. Note that each worker in the team

has potential links with other nodes in the network (potential customers, connected to the

workers by the thin lines), and in each period some of these links become active (actual

customers, connected to the workers by the thick lines). Note that customers are not con-

nected to each other. This captures the fact that individuals from certain professions (i.e.

shop clerks) may come into contact with several clients during a day, but sequentially, so

their visits do not overlap. Note also that the customers of the H-local establishments are

all located in the same area of the network. With this we want to capture the fact that

many of these establishments have a local customer base. Panel (c) of Figure 2 illustrates a

team of H-global workers. There are two differences between H-local and H-global. The first

is that customers in H-global are (potentially) connected to each other. The second is that

customers in H-global are located all over the network. These two features of the H-global

are meant to capture activities like a concert or a sports event where customers come from

all over the city and, by the nature of the event, have prolonged interactions with other

customers. Finally observe that due to the nature of their work, H-workers do not have the

opportunity of working from home. Visually Figure 2 illustrates that the same team of 3

workers has few connections in a L-workplace, more connections in a H-local workplace, and

even more and widespread connections in a H-global workplace.

Worker links are, thus, intrinsically different from school links or public transportation

links for two reasons. First, they include long links, connecting individuals in the network

who are not necessarily in the same geographic area. Second, the number of connections

of each individual worker can be different, with L-workers having only stable links, and H-

workers having stable and unstable links. For convenience, we record worker links in two

adjacency matrices: GW , which records all co-worker links (stable) in the H and L sector,

and GC which records worker to customer links in the H-sector (unstable) and customer to

customer links in the H-global sector (unstable).

Network Clocks An important network feature, for the purpose of disease spreading,

is the presence of unstable links between nodes. Connections in the household layer, the

neighborhood layer, and among teams of workers—in the workplace layer—are stable, as

individuals are linked with the same set of people every period (e.g. their network links are
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always active). On the other hand, interactions in the school layer, the public transportation

layer, and between shoppers and workers—in the workplace layer—are inherently unstable

(e.g. only a subset of potential links are active every period). To model this, we incorporate

a clock in the spirit of Acemoglu et al. (2010) and Acemoglu et al. (2013). More specifically,

for all t ≥ 1, we associate a clock to every link of the form (i,j) in the original adjacency

matrix Gi (where i = S, P, C) to determine whether the link is activated or not at time t.

The ticking of all clocks at any time is dictated by i.i.d. samples from a Bernoulli Distribution

with fixed parameter %i ∈ (0, 1], meaning that if the (i,j)-clock ticks at time t (realization

1 in the Bernoulli draw), the connection between agents i and j is active at time t. This

is meant to capture two kids in the same school having lunch together on a given day, two

persons sitting next to each other in the subway, or a customer and a cashier interacting over

a transaction. The Bernoulli draws are represented by the M ×M matrix of zeros and ones

cit. Thus, the adjacency matrices for school, public transportation and worker-customers

networks evolve stochastically across time according to

Gi
t = Gi ◦ cit (1)

where i = S, P, C and ◦ denotes the Hadamard product

City Network: Finally, we superimpose the layers described so far to construct a meta

network which corresponds to our synthetic city. The adjacency matrix capturing all links

within a city, Gt, is constructed as a weighted sum of the different layers. The weights

correspond to the relative importance of each layer, capturing that individuals spend different

amounts of time interacting with others in different social spheres. In particular, we have

that

Gt = ωHt G
H + ωNt G

N + ωWt GW + ωSt G
S
t + ωPt G

P
t + ωCt G

C
t . (2)

Each element in Gt, denoted by gi,j,t, summarizes the link between two individuals i and j

at time t, weighted by the strength of their relationship. Note that the weights of each layer

can vary over time. We will calibrate their variation over time to match the shift toward

household and neighborhood layers during the pandemic.

3.2 The EPI component

The spread of the disease within our multilayered network is the result of two types of

events: the person-to-person transmission of the disease (which depends on the network)
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Susceptible, S Exposed, E

Infected A, IA

Infected P, IP Infected S, IS

Recovered, R

pi,t(Gt, πt, η)

α

1− α

γ

ρS

ρA

Figure 3: Transition between health states

and the progression of the disease for a given infected person, which is independent from the

network structure. Our modeling of the disease progression closely follows a SEIR structure,

a variant of the SIR model that is common in the epidemiological literature, where we added

the possibility of an “asymptomatic” branch. This assumption is motivated by the fact

that, during the COVID-19 pandemic, many infection cases went undetected, either because

symptoms were mild, or because testing was not available. These cases were never officially

recorded as infected, and transited directly to the recovered stage. However, according to

several studies, they significantly contributed to the spread of the disease.6

Each individual node can be, at each point in time, in one of six health states: Susceptible,

Exposed, Infected-Asymptomatic, Infected-Pre-symptomatic, Infected-Symptomatic, and

Recovered.

(1) Susceptible (S): a node which has not been exposed to the disease, but may contract

it in the future.

(2) Exposed (E): a node which has been in contact with an infected node and has con-

tracted the disease. Exposed nodes are not infectious and continue to perform normal

activities. However they will transit with certainty to one of the infectious states the

day following the exposure.

6See, for example, Li et al. 2020.
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(3) Infected Pre-symptomatic (IP): a node which is infected and will show symptoms in

the future. Nodes at this stage do not know they are infected, so they continue to

perform normal activities. They transmit the disease with probability πt.

(4) Infected Symptomatic (IS): a node which is infected and shows symptoms. IS nodes

are removed from all layers of the network, with the exception of the household layer.

They transmit the disease with probability πt.

(5) Infected Asymptomatic (IA): a node which is infected, but does not and will not show

severe symptoms. These nodes do not know they are infected, so they continue to

perform normal activities. IA nodes, when in contact with an S node, transmit the

disease with probability ηπt, with 0 ≤ η ≤ 1.

(6) Recovered (R): a node which is no longer infected. Recovered nodes are immune to

the disease and can resume normal activities.

Note that all nodes in an infected state can transmit the disease to susceptible nodes, al-

though the infected asymptomatic are less likely to transmit. The transition between states

is illustrated in Figure 3. A susceptible node i contracts the disease at time t with prob-

ability pi,t and if it does so, moves to the exposed state. An exposed node transitions to

the asymptomatic stage with probability α and to the pre-symptomatic stage with proba-

bility 1− α. A pre-symptomatic node moves to the symptomatic stage in each period with

probability γ and a symptomatic node moves to the recovered stage with probability ρS.

An asymptomatic node, on the other hand, has a probability ρA in each period of moving

directly to the recovered stage. Finally, recovery is an absorbing state. The key object of

our analysis is pi,t, the probability that a susceptible node i contracts the disease in period t.

The probability pi,t is a function of the active contacts of node i at time t (encoded in Gt),

of their health status and on the odds of contracting the disease conditional on meeting an

infected node (governed by the parameters πt and η). In particular we can write

pi,t(Gt, πt, η) = 1−
M∏
j=1

(1− πtηA(j,t))gi,j,tI(j,t). (3)

where gi,j,t is the ith, jth element of Gt, I(j, t) is an indicator function that equals 1 when

node j is infected (either pre-symptomatic, a-symptomatic or symptomatic) at time t, and

zero otherwise, and A(j, t) is a similar indicator function for the infected-asymptomatic

status. This equation makes it clear that the spreading of the disease in the economy depends
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not only on the disease prevalence (captured by I(j, t) and A(j, t)) and on the biological

transmissibility (captured by πt and η), but also on the network structure summarized by

Gt. Note finally that we allow the transmission probability upon a meeting, πt, to be time

varying to allow for seasonal variation in transmission (see Atkeson et al. 2021) and for

changes in the availability of personal protective equipment.

3.3 The ECON Component

Individual nodes, together with the network structure, produce, at each point in time, new

infections and economic output. This section describes how output gets produced over the

network and how it is affected by social distance policies and by behavioral changes that

result from the progression of the infection. The two workplaces described in Section 3.1 map

into two sectors where output is produced. Both sectors produce the same homogenous good

(which is also the numeraire) and production is organized in establishments.7 In the L-sector

there are QL ex-ante identical establishments, each endowed with the same amount of fixed

capital KL. These establishments employ teams of L-workers. In the H-sector there are also

establishments which hire teams of H-workers, and we allow capital to be potentially different

across establishments. As we think of these two sectors as having a substantially different

occupational mix, we assume that workers cannot move across sectors.8 In the L-sector,

production requires L-workers and capital, while in the H-sector, production requires H-

workers, capital, and customers. We first describe a pre-pandemic steady state equilibrium,

where there are no infected nodes and the level of economic activity is stable over time,

and then move on to describe how economic activity evolves as the disease hits the city and

containment measures are adopted.

3.3.1 Pre-pandemic equilibrium

L-Sector Recall that establishments in this sector are homogenous. Each establishment

produces yL units of output according to

yL = Kθ
Ln

1−θ
L

7The assumption that the goods produced by the two sectors are perfectly substitutable is done to simplify
the analysis, however we view it as broadly consistent with the large substitution from services into goods,
observed during the COVID pandemic

8The details about mapping actual sectors of the economy into these two stylized sectors are discussed
in Section 4.
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where nL denotes units of labor. Notice that nL is labor input which is not necessarily

the same as employment, as not all L-workers supply the same amount of labor input.

In particular, consistently with recent empirical work by Dingel and Neiman (2020) and

Leibovici et al. (2020), we assume that a fraction λ of L-workers can work from home, and

the labor input (or productivity) of these workers is δλ% higher than the labor input of those

that cannot work from home. Given the wage rate per unit of L-work wL, the establishment

manager chooses labor input to maximize profits, which are given by yL−nLwL. This implies

that per establishment labor demand is given by

nL = KL

(
1− θ
wL

) 1
θ

. (4)

Labor supply of the L-workers is inelastic and is simply given by the total numbers of L-

workers times their average labor input. A pre-pandemic equilibrium is then a wage rate wL

and quantity of L-labor per plant nL such that, i) given wages, nL is chosen optimally by

the plant manager and ii) labor market for L-workers clear. Equation 5 summarizes these

two conditions

QLnL = QLKL

(
1− θ
wL

) 1
θ

︸ ︷︷ ︸
Labor Demand

=
[
λ(1 + δλ) + (1− λ)

]
νL(1− νK)M︸ ︷︷ ︸

Labor Supply

, (5)

where νL denotes the share of adults which work in the L-sector and (1 − νK) the share of

adults in the population, implying that νL(1− νK)M is the total number of individuals who

work in the sector, while λ(1 + δλ) + (1− λ) is their average effective labor.

H-Sector The locking down of high contact establishments has been at the centerpiece of

the policy discussion during the 2020 COVID-19 pandemic. Although it has been widely

acknowledged that larger high contact establishments (such as sports venues) lead to fast

spreading of the disease, there has been much less emphasis on the fact that these establish-

ments have more capital (see, for example, Foster et al. 2006), and thus shutting down all

the workers in those establishment might be more costly, as more capital will remain idle.

In order to capture this trade-off we introduce heterogeneity in H-establishments. As we

already discussed in section 3.1 above we consider two types of establishments: H-local and

H-global, indexed by j = 1, 2. There are QH1 H-local establishments (small and medium

retail stores) which have less capital, and have customer bases drawn from individuals in a

geographically close area. There are QH2 large establishments (e.g. large shopping malls,
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concert venues, and stadiums) which have more capital and have customer bases drawn from

the entire network. Each establishment of type j in the H-sector produces yHj units of output

according to

yHj = Kθ
Hj

(
min

{
KHjd

µ
, nHj

})1−θ

,

where KHj denotes the capital of establishment of type j (KH1 < KH2), nHj denotes the

number of workers (which in this sector are homogenous) employed by establishment of type

j, µ is the number of customers that a H-worker can attend to and d represents the number of

customers (per unit of capital) which shows up at establishment i. This assumption captures

that in the H-sector customers and workers are complement in production: if a customer

does not go to the establishment, a sale does not materialize and output is not produced. In

addition, if there are too few workers, they may not be able to serve all the customers that

come to the establishment. The establishment manager takes as given the wage rate wH and

the demand d and hires workers to maximize profits, which are given by yHj −nHjwH . This

implies that labor demand in establishment of type j is given by

nHj = KHj min

{(
1− θ
wH

) 1
θ

,
d

µ

}
. (6)

Similarly to the L-sector, the labor supply of the H-workers is inelastic and is given by the

total numbers of H-workers, which is equal to M(1−νK)νH . The last element that is needed

to define a pre-pandemic equilibrium is the determination of d. Recall that in our model

city there are M individuals, and each person makes s shopping trip every period. It follows

that the total number of customers of the H-sector is Ms. The customer capacity of the

H-sector is instead given by the sum of all workers employed in that sector, times the number

of customers a worker can attend, µ. Since in equilibrium the sum of all workers employed

in the H-sector is the labor supply in the sector, equilibrium customer capacity is given by

µM(1−νK)νH . We then assume that in a pre-pandemic equilibrium, the number of shopping

trips per person is such that total shopping trips equals customer capacity of the H-sector,

that is s = µ(1− νK)νH .

To sum-up, a pre-pandemic equilibrium in sector H is a wage rate wH , a quantity of H-

labor per type of establishment nHj and an amount of customers per capital d, such that, i)

given wages and customers, nHj is chosen optimally by the establishment manager, ii) labor

market for H-workers clear and iii) the total number of shopping trips equals the customer
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capacity of the H sector.9 Note that our concept of equilibrium guarantees that in every pre-

pandemic period every shopper in each of her/his shopping trip is assigned to an H-worker

that can serve her. Note that the maximization of profit at the establishment level, plus the

heterogeneity in capital imply that type 2 establishments (H-global) will employ more labor,

make more sales and have higher output.

3.3.2 Production during the pandemic

In the pre-pandemic equilibrium output is equal across establishments of the same type and

is constant over time. During the pandemic, however, output can change over time, and it

can be different across establishments of the same type. As discussed in Section 3.2 nodes

that are infected and show symptoms are prevented from working and shopping. Moreover,

as the disease spreads, policies are introduced that may prevent also a fraction of healthy

workers from working at their establishment. We denote by nLit the labor input of L-workers

at establishment i in period t, by nHjit the number for H-workers that show up at work in

H-establishment i of type j (local or global) in period t, and finally by dit the number of

customers (per unit of capital) that will show up to shop at H-establishment i in period t.

By assumption, in the short run establishments can not replace workers, therefore when the

number of workers falls, establishment output will also fall. Moreover, when a customer of

an H-establishment is sick and does not show up to shop, the output of that establishment

will generally be reduced. We can now define Yt, i.e. the total production of the city in

period t as

Yt =

QH1∑
i=1

[
Kθ
H1

(
min

{
ditKH1

µ
, nH1it

})1−θ
]

︸ ︷︷ ︸
Output of H-local establishments

+

QH1+QH2∑
i=QH1+1

[
Kθ
H2

(
min

{
ditKH2

µ
, nH2it

})1−θ
]

︸ ︷︷ ︸
Output of H-global establishments

+

QL∑
i=1

Kθ
Ln

1−θ
Lit︸ ︷︷ ︸

Output of L establishments

The time series for Yt during the pandemic is a key object of interest in our policy

experiments below, as it summarizes the economic impact of the pandemic and of the various

9For simplicity, we do not develop an explicit theory of the individual choice of shopping trips. A possible
way of doing so, that would be consistent with our equilibrium restriction, would be to have the individual
benefit of shopping trips to be decreasing in the tightness of the shopping market, i.e. in the ratio between
shoppers and customer capacity
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measures of pandemic control.

4 Calibration

In this section we describe how we set the values for the parameters of the ECON-EPI

network, in order to numerically assess the impact of the pandemic and the effects of several

policies.

4.1 Demographics and Public Transportation

We calibrate our model to a 5% synthetic version of the New York-Newark-Jersey City

(NY-NJ-PA) metro area, which in 2019 had a population of approximately 20 million. The

percentage of kids in the population νK is set to 17% so that the synthetic city has 40% of

households with kids, which matches the percentage of households with at least one child

under 17 in the metro area from the 2014-2018 American Community Survey (ACS). The

percentage of non working adults νN is set to 37%, to match the employment to population

ratio for persons over 18 in the metro in 2019.10 The share of agents using public transporta-

tion, φ, is set to 32% in order to match the percentage of individuals who report commuting

to work using public transportation in the NY-NJ-PA metro area from the 2014-2018 ACS.

Table 1: Demographics and Public Transportation

Parameter Name Symbol Value Source

Demographics

Total Population M 1,000,000 Census Data: ACS 2018
Share of Kids νK 17% American Community Survey
Share of Non-working Adults νN 37% American Community Survey

Public Transportation
Share using Public Transportation φ 32% American Community Survey

10Employment figures are from the BLS and population figures are from the Census.
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4.2 Workplace

An important aspect of the calibration is to map workers in the data to workers in the two

sectors of the model: the H and L sectors. In order to do so, we first work with occupations.

Recall that there are two key features that characterize the H-sector: one is the physical

proximity with other people (so that infection can be transmitted) and the second is the

instability of the contact with customers (which also speeds up the spread of the disease).

To capture these two features in an occupation, we use two questions in the ONET database.

The first one asks about physical proximity to other people on the job, while the second one

asks about the importance of interactions with external customers.11

The answers to these questions can be used to construct two indexes, both ranging from

0 to 100, that give, for each 6-digit occupation, measures of physical proximity and external

interactions. Next, using a standard crosswalk, we compute similar indices for all the private

sectors at the 2-Digits NAICS level, where the index for sector i is the average of the indices

of each occupation j in that sector, weighted by the national employment share of occupation

j in sector i. This procedure yields indices of physical proximity and external interactions

for all the 2-digits NAICS sector. Figure 4 shows these (standardized) indices for all the

NAICS 2 digits private sectors.

The shaded northeast quadrant highlights the 5 sectors which have both indices above the

mean; we thus construct the H-sector by aggregating them, and the L-sector by aggregating

all the others.

In Table 2, we report key characteristics of workers in the two sectors using employment

figures from the Census Statistics of US Business (SUSB) for the NY-NJ-PA metro area

in 2016. The L-sector employs more workers (54% v/s 46%), and workers in that sector

have higher average yearly wages (94k v/s 40k). In the last two columns we compute the

fraction of workers in each sector that work from home and a measure of their wage premium

(relative to those who do not work from home). Note that in the L sector there are many

more workers that work from home and that the annual wage of the home L-workers is

roughly 16% higher than the wage of the non home workers in the same sector.12

11Specifically the first question (ONET question 21) is “How physically close to other people are you when
you perform your current job?” and the second question (ONET question 8) is “In your current job, how
important are interactions that require you to deal with external customers (as in retail sales) or the public
in general (as in police work)?”

12To measure the share of workers that work from home we first use ACS data to compute the share of
home workers in each 2-digits NAICS sector and then take a weighted average of these percentages, where
the weights are the employment shares of each NAICS sector in our 2 macro sectors. Similarly to compute
wages of home workers we take a weighted average of the wages in each sector, where the weights are the
shares of home workers in each NAICS sector.
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Figure 4: Identifying high contact sectors

Table 2: Characteristics of workers in H and L Sectors

Share Avg. yearly wages ($) Share Home workers Home wage premium
L-sector 54% 94k 7% 16%
H-sector 46% 40k 3% 6%

In the next section, we use these numbers to pin down the labor supply and the techno-

logical differences across the two sectors.

4.3 Labor and Technology

The general logic of this section is that restrictions from the pre-pandemic equilibrium (see

Section 3.3.1), plus data from firms and workers as described above, pin down the parameters

that characterize the labor supply and the technology in the L and H sectors. All the

parameters are reported in Table 3 below.

We first use statistics on home workers and on their wages reported in Table 2 to pin down

the parameters λ and δλ, which determine: (i) the fraction of L-workers that can work from

home and (ii) the ratio of their wage relative to the wage of those who cannot work from home
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in the L-sector.13 In order to determine the fraction of L-workers who can work from home in

our series of experiments, we use two types of information. In Table 2, we report that in the

L-sector 7% of workers already work from home before the pandemic hits. However, this is a

lower bound for the fraction of workers that can actually start tele-commuting once the level

of infections starts to increase and social-distance and lockdown measures are implemented.

Dingel and Neiman (2020) estimate the fraction of workers that can potentially work from

home in each occupation based on occupational characteristics. We compute their measure

for each sector and, aggregating by sector, we find that the fraction of L-workers that can in

principle tele-commute is 49.7%. We view this number as an upper bound as, in the short

run, it is unlikely that such a large percentage of workers can switch to tele-commuting. For

this reason, we set the fraction of workers who can actually work from home, λ, to 28%

(which is the mid-point between the lower and upper bound).

In summary, we consider a pre-pandemic equilibrium with 7% of L-workers working from

home, and assume that the fraction of these workers working from home increases to its

maximum, λ = 28%, during the pandemic. We assume that L-workers that cannot work

from home supply 1 unit of labor input, while L-workers that can work from home supply

1 + δλ = 1.16 units, in order to match the fact that, within the L-sector, sectors with more

home workers pay higher wages. We then use demographic statistics from Table 1, plus

worker statistics from Table 2, to pin down the parameters νL and νH , which denote the

share of adults working in the L and H sectors, respectively. All these parameters determine

the total labor supply (in units of labor input) in both sectors.

Both sectors share constant returns to scale production functions, where capital share is

common and given by θ. We estimate θ using the standard methodology outlined in Cooley

and Prescott (1995), using 2018 data for the New York Metro Area.14

Given θ we can normalize the wage of a unit of labor (which is equivalent to the wage of

a non-home worker) in the L-sector to 1 and use the establishment labor demand (Equation

4) to pin down the labor demand per unit of capital. We then use the labor market clearing

(Equation 5) to pin down the total capital in the sector QLKL. Note that in the pre-pandemic

equilibrium the number of establishments QL is not determined separately from the capital

13Recall that, since few workers in the H-sector work from home, we assume that the percentage of H-
workers that work from home is 0, both before and during the pandemic.

14The estimate is the ratio between capital income (consumption of fixed capital plus rent, interest and
dividend income) and the sum of capital income plus labor income (compensation of employees). Data for
rent, interest and dividend income, and for compensation of employees is available from BEA regional tables.
Consumption of fixed capital is computed by first taking the ratio of consumption of fixed capital to GDP
on national data for 2018 (the ratio is 16%) and then multiplying it by the metro area GDP.
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Table 3: Labor and Technology Parameters

Parameter Name Symbol Value

Share of Capital Income θ 33%

L-Sector

Share of adults working in L νL 34%
Share of L-workers that can work from home λ 28%
Home premium δλ 16%
Number of establishments (14 wkrs) QL 18,400
Capital per unit of labor KL

nL
3.4

H-sector

Share of adults working in H νH 29%
Number of H-local establishments (14 wkrs) QH1 12,500
Number of H-global establishments (56 wkrs) QH2 500
Number of customers per H-worker µ 4
Capital per unit of labor KH

nH
0.26

per establishment KL, so we simply pick QL so that the number of workers per establishment

in the model is 14, which matches the number of workers per establishment in the NAICS

sectors that compose our L-sector.15

Now moving to the H-sector, we use, as we did in the L-sector, the establishment labor

demand (Equation 6) to pin down the labor demand per unit of capital. We then use the

labor market clearing to pin down the total capital in the sector QH1KH1 + QH2KH2. The

next step is to identify in the data H-local and H-global establishments. Our strategy is to

classify as H-global all non-health establishments with more than 40 employees in the H-

sector of the NY-NJ-PA metro.16 This classification results in a share of H-workers working

in H-global establishment of approximately 13.4%. We denote this share as νH2. We then

pick QH1 and QH2 to match average establishment size in the H-local and H-global sector.

15In the model, the number of workers per establishment is smaller than the quantity of effective labor
as the average worker, due to higher productivity of home workers, supplies more than one unit of effective
labor.

16The reason for excluding the health sector from the H-global, despite the presence of some large estab-
lishments in that sector (large hospitals) is that these large establishments are essential and were never shut
down
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In particular, we match an average establishment in the H-local sector of 14 employees and

an average establishment size in the H-global sector of 56 employees. The values of QH1 and

QH2 are reported in Table 3.

The remaining parameter to be determined in the H sector is µ, that is the number of

customers that a worker can attend to in a day. Recall that, in a pre-pandemic equilibrium,

in the H-sector the number of customers is equal to the total customer capacity. In the

next section, we calibrate the equilibrium shopping trips (s) to be 1 per person, so that the

total number of customers in a day is M . This implies, given the share of H-workers in

the population, that the parameter µ is approximately 4; that is, an H-sector worker serves

an average of 4 customers per day. One final important statistic reported in Table 3 is the

capital per unit of labor, which is higher in the L-sector (3.4) than in the H-sector (0.26).

The magnitude of this gap is identified from data on the wage differential (see Table 2)

between workers in the two sectors. The reason why a unit of labor used in the production

of the final good in the L-sector receives a higher compensation than a unit of labor used

in the production of the final good in the H-sector, is that labor in the L-sector works with

more capital.17

4.4 Network Contacts and Weights

The number of contacts each person has on each layer, and the weights of different layers play

an important role in the spreading of the disease through the network. Our main reference

for setting these in the model is the work by Mossong et al. (2008), which, using a common

paper-diary methodology, has collected data on various characteristics of daily face-to-face

interactions for a sample of over 7000 persons in 8 European countries.

The number of contacts of various individuals in different layers in the model and the

targets from Mossong et al. (2008) are reported in the first two columns of Table 4.

Mossong et al. (2008) reports that on average each individual has 5.2 contacts in the

household and during leisure activities. We map these contacts with model’s contacts that

take place within the household and neighborhood layers. Since the average household size

in the model is 2.4, we impose that each household has on average 2 neighbors, so that each

adult has an average of 5.4 household/neighbor contacts (1.4 coming from the household and

4 coming from other adults in the 2 neighbors) and each kid has an average of 2.8 contacts (2

17In our set-up, we have abstracted from differences in human capital among the workers in the two
sectors, and attributed all the differences in wages to differences in physical capital. Since in the short run
physical capital is fixed, the results concerning output losses from shutting down workers in the two sectors
are independent on whether we attribute wage differences to physical or human capital.
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from the households and 0.8 from the other kids in the 2 neighbors). These numbers result in

an average across adults and kids of 5 contacts which is close to the 5.2 reported by Mossong

et al. (2008). Mossong et al. (2008) also reports that, on average, each individual experiences

2 contacts during shopping and 0.4 while traveling. We set the number of shopping trips per

person and the number of meetings while using public transportation in the model to match

these two figures.18

Moving now to the differences between kids and adults, Mossong et al. (2008) reports that

kids between the ages of 0 and 19 have on average 15.3 contacts, and adults have on average

12.4 contacts. In the model, we set the number of school contacts (which are specific to kids)

to match total kids contacts. For adults, the number of contacts is more heterogenous. A

fraction of adults (the non-workers) have no contacts resulting from work. Another fraction

(the L-workers) have contacts resulting from meeting their team (of size T ) of co-workers,

where the team of workers is meant to capture the set of co-workers with which a worker

interacts more closely. Finally, the H-workers have contacts resulting from the team of co-

workers (of sizes T ) and from meeting with customers (µ). Since we do not have much hard

evidence on the size of workers teams, we simply set the size of the team T = 7 to match the

total number of adult contacts.19 Notice also that this choice for the size of teams together

with the data on establishment sizes in Table 3 implies that an L establishment employs

2 teams, a H-global establishment employs 8 teams and a H-local establishment employs 2

teams.

Mossong et al. (2008) also reports information on the average duration of contacts, by

contact type (daily, weekly and first time). We identify contacts in the household, work and

school layers as daily, with an associated average duration of 3 hours. We identify shopping

and neighborhood with weekly contacts, with an associated average duration of 1.4 hours

and finally we think of contacts during travel as first time contacts, with an average duration

of 0.5 hours. These figures results in weights of each layer (normalized to sum to 1) which

are reported in the third column of Table 4. These weights are then used to identify the

parameters used in equation 2 that capture the weight of each layer in the pre-pandemic

equilibrium ωH0 = ωW0 = ωS0 = 22%, ωP0 = 4% and ωC0 = ωN = 10%.

The final column of Table 4 reports the potential pool of contacts for those layers where

18The number of contacts during a shopping trip depends on where the shopping is done. Shopping in
H-local establishment results in only 1 contact (the sales person). Shopping in a H-global establishment
results in V + 1 contacts where V is the number of other customers the shopper comes into contact with.
Setting V = 8 results in 1(1− νH2) + 8νH2 ' 2 contacts for the average shopping trip.

19A team size of 7 results in 6 co-worker contacts for the H-worker, and only 5.6 contacts for the L-worker
because a fraction of the workers work from home.
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Table 4: Network Contacts and Weights

Person type Layer Actual Contacts Weight Contact Pool
Model Mossong

All: Home and Neighbor 5 5.2 [ 22%, 10%] -
Shopping overall 2 2 10%

H-local 1− vH2 14
H-global 9vH2 M

Public Transport 0.3 0.4 4% 54
Kids: Total 15.3 15.3

School 10 22% 26
Adults: Total 12.4 12.4

Work
H-local (co-workers) 6 22% -
H-local (customers) 4 22% M/QH1

H-global (co-workers) 6 22% -
H global (customers) 4 22% M
L (co-workers) 5.6 22% -

the actual contacts are drawn randomly every day. This information is not available in

Mossong et al. (2008), however it is an important determinant of the spread of infection,

and therefore we pin it down using the network structure, as well as additional information.

For the shopping links, every person does (on average) vH1 and (1− vH1) shopping trips to

H-local and H-global establishments, respectively. When shopping at H-local, the pool of

potential sales people that a shopper meets is given by 14 (the employment size of the H-

local establishment). When visiting a H-global establishment, the pool of potential contacts

is given M (the entire population), because the H-global draws customers from the entire

network and each customer meets other customers when visiting the H-global establishment.

For adults working in H-local establishment, the pool of potential customers is given by

the local customer base which is equal to the size of the population divided by the number

of H-local establishments QH1. Workers in H-global establishments draw their potential

customers from the whole city, so their pool of contacts is the city population M .

For public transportation, we choose the number of potential contacts equal to 54 to

match the seating capacity of the R160 New York City subway car. Finally, for schools, we

proxy the pool of potential contacts with the class, so we set the size of the pool to 26 to

match average class size (across grades) in New York City public schools for 2018-19. The

ratio between the actual contacts and the contact pool for the unstable layers (shopping,

public transportation, school and H-work place) is then used to set the Bernoulli parameter

ρi in the network clocks described in Equation 1.
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4.5 Disease Transmission

The final parameters to be determined are those regulating the diffusion of the disease, de-

scribed in Sub-Section 3.2. We set some parameters based on epidemiological studies on

COVID-19, and set the remaining, for which there is less evidence, to match the early stages

of infection diffusion in the New York metro. Parameters are reported in Table 5.

Starting on the symptomatic branch, we set γ to 0.25 and ρS to 0.071, in order to match

a duration of the pre-symptomatic and symptomatic stages of the disease to 4 and 10 days

respectively (see, among others, Guan et al. 2020). Going now to the asymptomatic branch,

we follow the CDC’s best estimates for their Covid-19 Pandemic Planning Scenarios and set η

to 0.75 and α to 0.3.20 This captures the finding that asymptomatic cases are three-quarters

as infectious as the patients showing symptoms and account for 30% of cases. We assume

that the duration of the disease is the same for symptomatic and asymptomatic infections

and set ρA to match a duration of 14 days.

The literature has highlighted the importance of seasonality when modeling the spread of

COVID-19. As such, we allow for seasonality in the transmission rate following the approach

proposed in Atkeson (2021). Specifically, the transmission rate evolves according to

πt = π exp (φ(t))

where π is a parameter to be calibrated and φ(t) is given by

φ(t) =
γs
2

(
cos

(
(t+ γp)

2π

365

)
− 1

)

The parameter γs controls the size of the difference between the peak and trough of the

transmission rate and the parameter γp controls when transmission rates peak. We use

calibrated parameters reported by the author for the United States version of their model.

The last remaining parameters is π, the infectiousness of the symptomatic cases. Our strategy

is to pick this parameters so that the infection curve in the model exactly matches the data

in the initial period of the infection. In the next section we explain in more detail this choice.

20See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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Table 5: Disease Transmission Parameters

Parameter Name Symbol Value

Infection Probability π 0.174
Relative Infectiousness of IA η 0.75
Prob. of transition from E to IA α 0.3
Prob. of transition from IP to IS γ 0.25
Prob. of transition from IS to R ρS 0.1
Prob. of transition from IA to R ρA 0.071
Seasonality magnitude γs 0.35
Seasonality location γp 20

5 Results

This section first describes how we use mobility data to discipline changes in the network

contacts during the pandemic. It then shows how the calibrated ECON-EPI network per-

forms in explaining the infection dynamics, and contrasts it with another popular model of

infection spreading, i.e. the standard random mixing SIR model. Lastly it discusses the

contribution of the different layers of the network to the progression of the disease.

5.1 Changes in network structure during the pandemic

We focus on the period from March 8th, 2020, where the first 160 cases where reported

in the New York metro area, until May 25th, 2020. The progress of the infection in the

model does not only depend on initial conditions and epidemiological parameters, but also

on the network structure which, as the pandemic spreads, evolves. In order to capture this

evolution we use both information on actual regulatory changes and data on mobility, as

reported by Google.21 In particular Google reports four mobility series. The first three

track visits of individuals at workplaces, retail and public transport hubs, while the fourth

tracks length of stay of individuals at their residences. These series have a natural mapping

into our model: workplace mobility maps into presence of L-workers at their establishments,

retail mobility maps into presence of workers and shoppers at H-establishments and public

transport mobility maps into number of individuals using public transportation. Finally

residential mobility tracks the amount of time individuals spend at home, which in our model

is captured by the network weights. These four measures for New York City are reported in

21See appendix A for a timeline of the pandemic related policies in New York.
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the top panel of Figure 5. The panel shows that initially retail, workplace and transportation

mobility measures sharply fall, then they stay constant at a depressed level and partially

recover towards the end of the period. Residential mobility displays the opposite pattern.

This evolution is most likely the result of both changes in policy and in behavior.

Our strategy is to match these mobility time series as follows. First we match workplace

and retail mobility by furloughing a time varying fraction of both L and H workers. In

particular in each period we match the observed decline in workplace mobility in two ways.

In the first days of the pandemic we match the decline in workplace mobility by having all

L-workers that can work from home starting to do so. As time progresses and workplace

mobility continues to decline we match the further decline by furloughing a fraction of L-

workers each day. We also furlough a fraction of H-workers each day so to match the decline

in retail mobility. We assume that initially global and local workers are shutdown at the

same rate. After March 12, which is the date in which the city of New York banned large

events, we shut down H-global workers completely. When a worker is furloughed, her time

is reallocated to their home network. Note that when we furlough H-workers we also cut a

number of shopping links, as shoppers assigned to furloughed workers are not able to shop.

We also cut the number of public transportation links in our network to match the decline

in transportation mobility. Finally we close schools in the model on March 14th, which is

the date in which K-12 schools are shut-down statewide.22

Finally we match residential mobility data by let the network weights ωjt adjust during

the pandemic.23

The mobility patterns suggest a division of our period in three subperiods. The first

(labeled “closing”, from March 8th to April 3rd) is the period in which mobility sharply

declines, the second (labeled “lock-down”, from April 3rd to April 26th) is the period in

which mobility stays low, and the last (labeled “re-opening”, from April 26th to May 25th)

when mobility picks up.

22Schools were announced to be closed on March 16th, a Monday, so we shut down schools effectively on
Friday 14th.

23Unlike the workplace and retail mobility figures, which measures the change in the number of individuals
going to a location, residential mobility reflects the change in duration that people spend interacting with
members of the same household and with neighbors. In the model this measure maps into the sum of the
weights that individuals give to the household and neighbor layers (ωH

t and ωN
t ) plus the weights of the layers

from which each individual is shut down during the pandemic. In order to match the time series exactly in
each period we change ωH

t and ωN
t by a constant factor and adjust the other layer weights correspondingly.
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5.2 Network v/s Standard SIR

The bottom panel of Figure 5 shows the cumulative infection curve generated by the net-

work model against the data.24 Since our calibration strategy is to pick the epidemiological

parameters πt and α to match the infection curve in the first sub period, the network model

and the data lie on top of each other by construction until April 3rd. The periods after

April 3rd, however, constitute a validation of the model. The network model is close to the

empirical epidemiological curve all throughout the lock-down phase, and only shows slightly

faster growth in infection (relative to the data) as the city starts to re-open. For comparison

purposes, we also report the infection curve predicted by a standard SIR model, where each

individual has the same number of contacts as in the network, but the contacts are randomly

drawn across the entire population.25 We calibrate the epidemiological parameters in the

standard SIR in order to match the data infection curve in the first sub-period (exactly as

we did for the network model), and we change the number of random contacts in the SIR

so to match the average change in Google mobility. Possibly the most important message

of Figure 5 is that even when the two models (Network and standard SIR) are put on equal

footing, as they generate the same initial surge of infection and have similar containment

measures, they have sharply different predictions for the evolution of the pandemic. In the

network model, the infection naturally slows down, as the reduction in the number of con-

tacts is enough to keep the infection local and prevent the disease from reaching the entire

population. The SIR model, however, predicts that despite the reduction in contacts, the

infection takes off in an exponential fashion. This is due to the random nature of contacts:

in the SIR model, an individual is equally likely to meet any other individual in the city,

whereas in the network model contacts are more clustered and less random. Before we move

on to policy experiments, we use our calibrated model to quantify the contribution of several

layers to the infection.

24The epidemiological literature has established that reported COVID cases during the first wave were
severely underreported. For this reason we construct a series of imputed cases, using information on COVID
deaths. See appendix B for details on how we constructed the series.

25We do not directly use the classic SIR model, but an equivalent network formulation. Rather than have
multiple network layers, each individual has a single layer which connects them to all other nodes. The
transition between health states is regulated by the same parameters as in the network model, and described
in Figure 3. The probability of infection is therefore determined by the epidemiological parameters πt and η
and the per-period number of contacts. The pre-pandemic number of contacts is set to the average number
of contacts across children and adults reported in Mossong et al. (2008), and each period this number is
adjusted to match the average change in the Google mobility reports.

32



5.3 Infection Decomposition and Complementarities

In this section, we study the effect of shutting down different layers of the network, and

how this shutdown interacts with the transmissibility of the disease. In order to do so,

we sequentially set to 0 the weights of each layer of the network, and assess the impact

of shutting down one single layer on the evolution of the infection. An important issue in

assessing the impact of a given layer is the presence of mitigation policies (for example school

closures) or endogenous reduction of contacts (as captured by Google mobility). If contacts

in a layer are already substantially reduced, we might find that shutting down that layer

completely does not have much impact on infection; this, obviously, does not reflect the

importance of the layer, but rather the fact that the layer was already almost closed. For

this reason, we conduct this experiment in the fully open (pre-pandemic) network.

Figure 6 shows the evolution of the disease (percentage of active cases in each day) under

different scenarios. In both panels, we show epidemic curves for the network with all layers

open (benchmark), with the L-establishments shut down, with the H-local shut down and

finally the H-global shut down. The numbers under each label report the percentage of

workers that are shut down as the result of that policy.26 The panel on the left uses the

infection probability parameter π from our benchmark calibration, while the right panel

plots the same curves with a lower infection probability parameter, which we use later in

our re-opening experiments.
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Figure 6: Infection Decomposition

26We do not plot curves for schools as we will analyze the impact of school closure in the next section
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Focus first on the left panel. The first finding we highlight is that closing down the

H-global establishment achieves a substantial reduction of infection and delay in the peak

despite involving only a small reduction in employment. This is because the workers in the

H-global establishments have many contacts which are unstable and far reaching. These

properties of the H-global sector makes this layer very close to a random mixing set-up,

and thus very conducive to a rapid spread of the disease. The same logic applies when we

compare the effect of closing down H-local v/s L-establishments. Despite involving a smaller

reduction of workers (43.6% v/s 54%) shutting down the H-local achieves a larger reduction

in infection and a later peak, due to the fact that the H-local involve more contacts of more

unstable nature.

Next, we find it interesting to compare the right and the left panel of Figure 6. The curves

in the right panel are drawn from a simulation with a smaller infection probability parameter

and thus, not surprisingly, are lower, as there is less infection spreading. Note however that

with a smaller π the impact of shutting down high contact layers gets magnified. For example,

shutting down the H-global layer in a high π environment achieves a reduction of average

number of active cases over the first two months of 3.2% while the reduction is 4.9% in the low

π environment. To see why this the case, consider the infection probability of a susceptible

node with many infected contacts. If π is close to 1, the infection probability is close to 1

and not very sensitive to a marginal reduction of contacts. In this case, shutting down a

layer (and thus reducing the number of contacts) does not affect much infection dynamics,

which is always very fast. On the other hand, when π is lower (but sufficiently far from 0),

Equation 3 implies that a marginal reduction of contacts can significantly reduce the infection

probability. Therefore, in this case infection dynamics are more sensitive to the network

structure, and mitigation policies that reduce the number of contacts are more effective. This

highlights an important point, namely the complementarity between mitigation policies that

reduce the transmission of the disease (e.g. face masks) and mitigation policies that reduce

the number of contacts (i.e. shutting down malls). If the transmissibility of the disease is

high (π close to 1), then a moderate reduction in contacts is not very effective in reducing

infections. Similarly, if individuals have a large number of contacts, a moderate reduction

in transmissibility is not effective. However, if the transmissibility is lower, then the same

reduction of contacts can have a large impact on the spread of the disease, and similarly if

the number of contacts is lower, the same reduction in the transmissibility of the disease can

have a large impact on infection levels.
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Having established that the network model constitutes a good benchmark to study the

evolution of the pandemic, and having analyzed the importance of various layers, we now use

the model to conduct two types of policy experiments. The first set, in Section 6.1, studies

how counterfactual policies would have affected ECON-EPI outcomes at the outbreak of

the COVID-19 pandemic in New York City. These experiments are also helpful to evaluate

different options, should a new pandemic hit. The second set of experiments, in Section 6.2,

studies different strategies for reopening the city, as the infection subsides.

6 Policy Experiments

6.1 Lock-down strategies

As Figure 5 shows, after the strict lockdown of March and April, infections in the New York

metro area stopped increasing by mid May. The question that is often asked is whether the

lock-down was too strict. To answer this question, we perform a series of experiments that

relax lock-down restrictions in the first four weeks of the pandemic (e.g., between March 8th

and April 5th). With the lessons drawn from these experiments, we design a counter-factual

smart mitigation policy that targets sectors with higher risk of spreading. We show that this

policy could have reduced infections and increased output relative to the benchmark case.

We start from our benchmark case and compare it with three counterfactuals in which we

gradually bring back the same number of shutdown workers in each sector (L, H-local, and H-

global).27 We then compare the epidemiological and economic outcomes to our benchmark

case. Starting with the epidemiological outcomes (the top panel), we see that increasing

workers in the H-global sector has a very large impact on cumulated infections (over 5% of

the population). Extra workers in the H-local and L-sector have instead a more moderate

impact. The large increase in infections brought about by the additional H-global workers is

not surprising; as discussed earlier, these workers have a lot of random contacts, thus they

function as spreaders.

Moving now to the economic outcomes (the bottom panel), note that the output gains

are fairly similar (around 2% of GDP) across experiments. The largest increase in output

is in the L-sector, the sector where workers have the highest marginal product. Notice also

that bringing back the H-global workers yields a larger output gain than the H-local work-

ers, despite these two type workers having the same marginal product in the pre-pandemic

27The increase in the amount of workers in each sector is around 1% of the pre-pandemic total employment.
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equilibrium. The reason is during the pandemic workers in the H-global sector are mostly

shutdown, implying that their capital-labor ratio, and thus their marginal product, is higher.
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Figure 7: Policy counterfactuals

The results in figure 7 suggest that tightening the shutdown in the H-sector while relaxing

it in the L-sector might achieve a reduction in infection and an increase in output, relative
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Figure 8: Smart Mitigation

to the benchmark. In Figure 8, we consider the effect of such a policy, which we label

smart mitigation. More specifically, we impose stricter lock-down measures in the H-sector

(both in the H-local and H-global sector) while relaxing those in the L-sector. We impose

that the total number of individuals going to work is the same as the benchmark and that

the amount of workers reallocated by the policy is around 1% of the pre-pandemic total

employment level (the same amount considered in the experiments in Figure 7). A concrete
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example of such a policy would be to allow more workers in manufacturing plants to go to

work, while furloughing an equal number of local shopping mall workers that are allowed

to go to work in the benchmark. The figure shows that the smart mitigation achieves a

substantial double-gain. The top panel shows that it reduces the number of infections by

2% of the population of the metro area (400 thousands fewer cases) and the bottom panel

shows that at the same time it increases output, relative to the benchmark, by an average

of 2%.

6.2 Re-opening strategies

Results in Section 5 suggest that the network model captures well infection dynamics in

the lock-down period. However, as the city starts to reopen in the month of May, the

model predicts a level of infection that is higher than the data. One possible reason for this

discrepancy is that we keep the epidemiological parameters constant throughout our period,

while the much broader availability of PPE and of testing, together with social distancing

(e.g. requiring individuals to be 6 feet apart form each other) has reduced the transmissibility

of the disease. As this issue is critical to analyze reopening scenarios, we incorporate changes

in transmissibility by assuming that in the post lock down period (after April 26th) there is

a one-time decline in the parameter π. We calibrate this decline (from 0.17 to 0.13,) so that
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the infection curve in the reopening period (April 26th through May 25th) matches the data.

The result of this procedure is illustrated in Figure 9. The figure suggests that the network

model with the recalibrated π can be a good starting point to study reopening strategies,

that is to predict the evolution of infection and output under different assumptions for the

evolution of mobility. In Figure 10 and Table 6 we report the outcomes for five alternative

scenarios for the reopening of New York after the first COVID wave. The figure plots,

over the period July 2020-January 2021, the cumulated rate of infection for each scenario,

while the table reports the total output gains of each scenario, relative to a baseline. The

baseline scenario (labeled “Baseline”) is the one in which the L and H-local workplace and

public transportation reopen at the same rate as the rate of corresponding increase in Google

mobility, while schools and H-global workplaces are closed. The second (labeled “Broad”)

is one in which H-global establishments fully reopen by June 8th 2021, schools fully reopen

by October 1st 2021, and the other sectors are kept like in the baseline. The third and

the fourth (labeled “Broad, no Schools” and “Broad, no H Global”) are like the second but

with either the schools or the H-global establishments always closed. The figure shows that

these last three reopening scenarios lead to a significant increase in infections, relative to the

baseline. The reason is that in all three scenarios there is at least an open layer characterized

by unstable links with a large pool of potential contacts (the H-global establishments or the

schools), which is the engine of the fast infection spreading. The first three lines of Table

6 show the output gain, relative to baseline, of these three scenarios. Note that the best

scenario for output is the one in which the schools are closed and H-global establishments

are open. The reason is that closing the schools indirectly keeps output high, by reducing

the number of sick workers and shoppers. However in all these three scenarios the output

effects are overwhelmed by the large surge in infections.

A final, and perhaps more interesting, scenario we consider is the one labeled “Partial

Reopening”. In this case H-global establishment are kept closed, schools reopen only partially

(meaning that each day only half of the kids are allowed to go to schools) and workers in

the L and H-local establishments are allowed to go back to work at a rate which is 50%

faster than in the baseline. Figure 10 shows that in this scenario infection grows very slowly,

and Table 6 shows that such a policy can achieve output gains that are comparable to those

in the “Broad” scenario. This finding suggests that a policy of partial closure both in the

schools and in the workplace is most effective in limiting the progress of the disease through

the network, while allowing recovery in economic activity.
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Table 6: Reopening scenarios: output gains relative to baseline

Scenario Gain

Broad 2.2%
Broad, No Schools 2.6%
Broad, No H-Global -0.1%
Partial Reopening 2.0%

7 Conclusion

We develop an ECON-EPI network model to study the impact of the COVID-19 pandemic

on a large US metro area, and to evaluate policies that limit the human as well as the

economic damage. We build on the traditional SIR model by using network theory to put

structure on the patterns of human interactions. We find that this structure is useful to

understand observed epidemiological curves, featuring a large initial surge and a plateau

at a relatively low level of infections. Moreover we use our set-up to quantify how layers

of interactions contribute both to infection levels and economic activity. Network layers

that feature numerous and unstable contacts (such as large gatherings or schools) work as

ignition rods for the infection. Smart lock-down policies shut down these layers early, and
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smart reopenings keep them closed for longer. Opening sectors where workers interact with

each other in stable teams (such as manufacturing) is the best strategy to minimize output

losses, while at the same time keeping the spread of the disease under control.

There are several directions in which we could expand the study of pandemic control

on ECON-EPI networks. In our framework interactions are, for the most part, exogenously

determined. One direction for further research would be to study how the ECON-EPI pattern

of contacts can change endogenously, both in the short run, in response to fear, and in the

long run, in response to increased risk of a new pandemic.28

Our network analysis can also prove useful to think about how to efficiently allocate

limited testing/vaccination resources, which in the early phase of a pandemic are typically

scarce. The same principles we used to design “smart” lockdown and reopening policies,

can be used to design “smart” testing or vaccination. We conjecture that it would be

efficient to allocate testing/vaccination to layers of the network which have more numerous

and more unstable contacts, and our framework could be used to quantify the effects of

such a policy.29 Another extension of our analysis would be to introduce more group level

heterogeneity, such as different communities/neighborhoods in the city. Such an extension

would help to understand how much of the observed large differences in disease outcomes

across groups can be explained by differences in their social structure.30 It could also help

to design social policies that protect the more exposed communities and, at the same time,

reduce average spread. Finally, a related application of our analysis would be to analyze

how much of the differences in epidemiological and economic outcomes across metro areas

and across countries can be explained by differences in the network of interactions.31

28See the recent literature on the COVID-19 pandemic studying behavioral responses to the infection,
such as Alfaro et al. (2020), Farboodi et al. (2021), Krueger et al. (2022) and Toxvaerd (2020). See Fogli
and Veldkamp (2021) for a study of the endogenous evolution of network of interaction in societies with
difference prevalence of diseases.

29For some early works on efficient testing using the standard SIR set-up see Berger et al. (2022) and
Chari et al. (2021).

30For evidence of local differences in disease outcomes in the New York metro see Almagro and Orane-
Hutchinson (2022).

31See Fogli and Pastorino (2021) for a study on the importance of network interactions to explain the
different consequences of the COVID pandemic in the United States and Italy.
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A Changes in regulation in the New York Metro

The sequence of measures imposed by the NY government, aimed at slowing down the spread
of the disease, is summarized in Figure 11. Increasingly stricter mitigation policies reducing
gatherings, retail and production activities were implemented in a short span of time.

March 1 March 7 March 11 March 16 March 19 March 20March 12 April 28

First COVID 
case in NY

State of 
Emergency 

SUNY + 
CUNY begin 
distance 
learning
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Close, ban 
events (>50),

Reduce 
Workforce 75 %
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- Close 100% non-essential 
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Ban on Large 
Events (>500)

Re-opening plan:

- Phase 1: low 
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- Phase 2: "More 
essencial" business 
open

Close restaurants, 
bars, gyms.

Work from home

Figure 11: Timeline of lock-down Policies

B Imputation of COVID cases in New York City

B.1 Infection Fatality Ratio

The Infection Fatality Ratio (IFR) represents the number of individuals who die of COVID-
19 among all infected individuals (symptomatic and asymptomatic). This parameter is not
necessarily equivalent to the number of reported deaths per reported case because many
cases and deaths are never confirmed to be COVID-19, and there is a lag in time between
when people are infected and when they die. This parameter also reflects the existing
standard of care, which may vary by location and may be affected by the introduction of
new therapeutics. The IFR satisfies

IFR =
Deaths

TI
,

where TI denotes the total number of true infections. Letting IA denote the number of
asymptomatic and IS the number of symptomatic individuals,

TI = IS + IA.
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Using data on the number of deaths and estimates of the IFR, it is possible to back out TI,
the number of total infections, using the equation above. Because the IFR and the number
of deaths vary significantly with age, we use age-specific estimates.

B.2 Data on Number of Deaths

There is no official reporting of deaths by age over time for the NYC metro area. The
City32, a project led by Choi, Velasquez and Welch, aggregates information from the New
York City Department of Health and Mental Hygiene, the New York State Department of
Health, Governor Andrew Cuomo’s office, the Center for Systems Science and Engineering
at Johns Hopkins University, the U.S. Department of Health and Human Services and the
Centers for Disease Control and Prevention. The number of deaths per age bin is reported
in their GitHub repository33 for New York City between March 22, 2020 and May 16, 2020.
They consider five bins: 0-17 years, 18-44 years, 45-64 years, 65-74 years and 75+ years.
There is no other source that we are aware of reporting deaths by age for NYC after that
period. With this data, we can compute the proportion of all COVID deaths associated to
each age bin. The resulting series are shown in Figure 12
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Figure 12: Fraction of COVID Deaths by Age group in NYC

While there are some fluctuations early on in the sample, the proportions converge to
near-constant values by the end of April. The lowest percentage is observed in the 0-17
age-bin, which accounts for less than 0.5% of all deaths. It is followed by the 18-44 age-bin,
where around 4% of all deaths are observed. The 45-64 age-bin accounts for 22.4% of all
deaths, whereas the 45-64 age-bin represents 24.8% of them. By far the largest percentage
corresponds to the 75+ age group, accounting for 48.7% of all deaths in the sample.34

32See https://projects.thecity.nyc/2020 03 covid-19-tracker
33See https://github.com/thecityny/covid-19-nyc-data
34These numbers correspond to the average proportions by age bin between May 1st and May 16th 2021.
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Because we are interested in a time-series for the NY metro area (not just for NY City)
that would extend beyond May 16th, we need to combine this information with data on the
total number of deaths over time in our area of interest. The latter can be calculated by
aggregating the total number of deaths per day by county for all counties in the NY-NJ-CT
Metro Area. These series are reported in the New York Times repository35.

In order to compute the number of deaths by age group, denoted in the NY metro area,
we multiply the observed proportion of deaths per group (shown in the plot) by the total
number of deaths from the NY Times between March 22th and May 16th. Assuming that the
percentage of deaths by age-bin remains constant thereafter, we use the average proportions
by bin (computed between May 1st and May 16th). This gives us the number of deaths by
age bin i on day t, denoted Deathsi,t in what follows.

B.3 IFR Data

The IFRs by age bin for New York are obtained from Brazeau et al. (2022) meta analysis.36.
The authors apply Verity et al. (2020) methodology, which relies on Seroprevalence data, to
the New York metro area. The resulting IFR’s per age-bins are reported in Table 7

Name Values

Infection Fatality Ratio 0-17 years: 0.0000
18-44 years: 0.00077
45-64 years: 0.00623
65-74 years: 0.02205
75+ years: 0.05977

Median # days from IA to death 0-17 years: 10 (4, 31) days
18–49 years old: 17 (10, 30) days
50–64 years old: 19 (11, 30) days
≥ 65 years old: 16 (9, 25) days

Table 7: IFR parameters

In the table, we also report the median number of days between infection and death, as
reported by the CDC.

35See https://github.com/nytimes/covid-19-data and an explanation on how they smooth the series
here:https://github.com/nytimes/covid-19-data/commit/09af37ab4bd5155b6b4a455b945c92fef4ae737e

36The IFRs are reported in their Supplementary Appendix, page 25, for New York.
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B.4 Imputation Procedure

Denote the age-bins as: a = 0 − 17, b = 18 − 44, c = 45 − 64, d = 65 − 74 and e = 75+.
Under the assumption that reported deaths correspond to the true number of deaths, we
can compute37

TIt =
Deathsa,t−10

IFRa

+
Deathsb,t−17

IFRb

+
Deathsc,t−19

IFRc

+
∑

i={d,e}

Deathsi,t−16
IFRi

,

where t indicates the date of the observation and i the age-bin. Note that the formula takes
into consideration that a death observed in period t corresponds to an infection 10, 17, 19, or
16 days prior, as summarized in Table 7. Because some observations are lost, this restricts
our first imputed total case count to March 9th, 2020. Figure 13 shows our final series
of imputed Total Infections (dashed blue line, left axis) together with the total number of
infections as reported by the New York Times for the NY-NJ-CT metro area (solid red line,
right axis).
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Figure 13: Imputed Total Infections

A few observations are in place. First, cases start to increase earlier in time when imputed
from deaths. This is probably due to the fact that there was scarcity of testing in the NY area
at the outset of the pandemic, so many asymptomatic cases went on undetected. Second,
the number of imputed infections is about 10 times larger than what has been accounted
for in most of the sample. During mid-April it was 12 times larger, consistent with Havers
et al. (2020) study of sero-prevalence for NY. The prevalence for our imputed data during

37While the IFR for the first age bin is basically zero, we do observe some deaths in that group. In such
case, we simply used observed deaths as estimates of cases.
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August is about 22%, consistent with the CDC seroprevalence COVID Data Tracker38 for
New York of 22.5% for the same period. Near the end of the sample (by late October), the
ratio between imputed infections and reported infections is reduced to 6. Finally, note that
using data from the Johns Hopkins Dashboard for imputing deaths results in very similar
patterns.
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Figure 14: Reported v/s imputed cases

Daily cases (imputed and reported) are displayed in Figure 14. The dotted line is the
actual data, and the solid lines represent a 7-day moving average. The number of new cases
as reported by the New York Times converges to our imputed values in early August, and
the two series track each other well during the second wave (see Figure 15). Between August
1st and February 28th, about 88% of our imputed cases are reported. During April 2020,
only 20% of imputed cases were reported.

38See https://covid.cdc.gov/covid-data-tracker/#national-lab.
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